Suppr超能文献

基于深度学习的近红外光学断层成像图像重建:泛化评估。

Image Reconstruction Using Deep Learning for Near-Infrared Optical Tomography: Generalization Assessment.

机构信息

Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Adv Exp Med Biol. 2023;1438:161-166. doi: 10.1007/978-3-031-42003-0_25.

Abstract

Time is one of the most critical factors in preventing brain lesions due to hypoxic ischemia in preterm infants. Since early detection of low oxygenation is vital and the time window for therapy is narrow, near-infrared optical tomography (NIROT) must be able to process the high-dimensional data provided by today's advanced systems in the shortest possible time. Deep learning approaches are attractive because they can exploit such high information density while reducing inference time. The aim of this study was to evaluate the performance of a hybrid convolutional neural network, designed for NIROT image reconstruction and trained on synthetic data. Generalization capability was assessed using measurements on phantoms of a surface topology more divergent than the range of variation in the geometries of the in-silico data, with unseen, non-spherical inclusion shapes, and with source and detector arrangements different from those used for data generation. Substantial gains in speed, localization accuracy, and high image quality were achieved even under the highly varied measurement conditions.

摘要

时间是预防早产儿缺氧缺血性脑损伤的最重要因素之一。由于早期检测低氧血症至关重要,且治疗时间窗较窄,近红外光学断层扫描(NIROT)必须能够在最短的时间内处理当今先进系统提供的高维数据。深度学习方法很有吸引力,因为它们可以利用如此高的信息密度,同时减少推理时间。本研究的目的是评估一种混合卷积神经网络的性能,该网络专为 NIROT 图像重建而设计,并使用合成数据进行训练。通过对表面拓扑形状的体模进行测量来评估泛化能力,这些体模的拓扑形状比模拟数据的几何形状变化范围更为离散,具有未见的非球形包含形状,以及与数据生成所用的源和探测器排列不同的源和探测器排列。即使在高度变化的测量条件下,速度、定位精度和高质量图像也得到了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验