IEEE Trans Med Imaging. 2020 Apr;39(4):877-887. doi: 10.1109/TMI.2019.2936522. Epub 2019 Aug 20.
Diffuse optical tomography (DOT) has been investigated as an alternative imaging modality for breast cancer detection thanks to its excellent contrast to hemoglobin oxidization level. However, due to the complicated non-linear photon scattering physics and ill-posedness, the conventional reconstruction algorithms are sensitive to imaging parameters such as boundary conditions. To address this, here we propose a novel deep learning approach that learns non-linear photon scattering physics and obtains an accurate three dimensional (3D) distribution of optical anomalies. In contrast to the traditional black-box deep learning approaches, our deep network is designed to invert the Lippman-Schwinger integral equation using the recent mathematical theory of deep convolutional framelets. As an example of clinical relevance, we applied the method to our prototype DOT system. We show that our deep neural network, trained with only simulation data, can accurately recover the location of anomalies within biomimetic phantoms and live animals without the use of an exogenous contrast agent.
扩散光学断层成像(DOT)因其对血红蛋白氧化水平的出色对比度而被研究作为一种替代的乳腺癌检测成像方式。然而,由于复杂的非线性光散射物理和不适定性,传统的重建算法对成像参数(如边界条件)敏感。为了解决这个问题,我们在这里提出了一种新的深度学习方法,该方法学习非线性光散射物理,并获得光学异常的准确三维(3D)分布。与传统的黑盒深度学习方法不同,我们的深度网络设计用于使用最近的深度卷积帧理论来反转 Lippman-Schwinger 积分方程。作为临床相关性的一个例子,我们将该方法应用于我们的原型 DOT 系统。我们表明,我们的深度神经网络,仅使用模拟数据进行训练,可以准确地恢复仿生体模和活体动物内异常的位置,而无需使用外源性对比剂。