Suppr超能文献

人工智能在非综合征性颅缝早闭诊断与管理中的应用:综述

Artificial Intelligence Applications in Diagnosing and Managing Non-syndromic Craniosynostosis: A Comprehensive Review.

作者信息

Qamar Amna, Bangi Shifa F, Barve Rajas

机构信息

Surgery, John Radcliffe Hospital, Oxford, GBR.

Medicine and Surgery, University Hospitals of Leicester, Leicester, GBR.

出版信息

Cureus. 2023 Sep 15;15(9):e45318. doi: 10.7759/cureus.45318. eCollection 2023 Sep.

Abstract

Craniosynostosis is characterised by the premature fusion of one or more cranial sutures, resulting in an abnormal head shape. The management of craniosynostosis requires early diagnosis, surgical intervention, and long-term monitoring. With the advancements in artificial intelligence (AI) technologies, there is great potential for AI to assist in various aspects of managing craniosynostosis. The main aim of this article is to review available literature describing the current uses of AI in craniosynostosis. The main applications highlighted include diagnosis, surgical planning, and outcome prediction. Many studies have demonstrated the accuracy of AI in differentiating subtypes of craniosynostosis using machine learning (ML) algorithms to classify craniosynostosis based on simple photographs. This demonstrates its potential to be used as a screening tool and may allow patients to monitor disease progression reducing the need for CT scanning. ML algorithms can also analyse CT scans to aid in the accurate and efficient diagnosis of craniosynostosis, particularly when training junior surgeons. However, the lack of sufficient data currently limits this clinical application. Virtual surgical planning for cranial vault remodelling using prefabricated cutting guides has been shown to allow more precise reconstruction by minimising the subjectivity of the clinicians' assessment. This was particularly beneficial in reducing operating length and preventing the need for blood transfusions. Despite the potential benefits, there are numerous challenges associated with implementing AI in craniosynostosis. The integration of AI in craniosynostosis holds significant promise for improving the management of craniosynostosis. Further collaboration between clinicians, researchers, and AI experts is necessary to harness its full potential.

摘要

颅缝早闭的特征是一条或多条颅缝过早融合,导致头部形状异常。颅缝早闭的治疗需要早期诊断、手术干预和长期监测。随着人工智能(AI)技术的进步,AI在颅缝早闭管理的各个方面具有巨大的辅助潜力。本文的主要目的是回顾描述AI在颅缝早闭中当前应用的现有文献。突出的主要应用包括诊断、手术规划和结果预测。许多研究已经证明,使用机器学习(ML)算法根据简单照片对颅缝早闭进行分类,AI在区分颅缝早闭亚型方面具有准确性。这证明了其作为筛查工具的潜力,并可能使患者能够监测疾病进展,减少CT扫描的需求。ML算法还可以分析CT扫描,以帮助准确、高效地诊断颅缝早闭,特别是在培训初级外科医生时。然而,目前缺乏足够的数据限制了这种临床应用。使用预制切割导板进行颅盖重塑的虚拟手术规划已被证明可以通过最小化临床医生评估的主观性来实现更精确的重建。这在缩短手术时间和避免输血方面特别有益。尽管有潜在的好处,但在颅缝早闭中实施AI仍存在许多挑战。AI在颅缝早闭中的整合对于改善颅缝早闭的管理具有重大前景。临床医生、研究人员和AI专家之间需要进一步合作,以充分发挥其潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验