Suppr超能文献

整合临床癌症和 PTM 蛋白质组学数据鉴定 ACK1 激酶激活的机制。

Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation.

机构信息

The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.

Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

Mol Cancer Res. 2024 Feb 1;22(2):137-151. doi: 10.1158/1541-7786.MCR-23-0153.

Abstract

UNLABELLED

Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases.

IMPLICATIONS

This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.

摘要

未标记

除了最常见的突变激活的致癌基因(突变驱动基因)之外,可能还存在多种低频突变驱动基因,每个基因都可能成为靶向治疗的新目标。为了识别新的和研究较少的突变驱动基因,我们开发了一种机器学习(ML)模型,该模型整合了经过精心整理的临床癌症数据和翻译后修饰(PTM)蛋白质组学数据库。我们将该方法应用于 62746 例患者癌症,涵盖 84 种癌症类型,并预测了 1148 个基因中的 3964 个致癌突变,其中许多突变会破坏已知和未知功能的 PTM。潜在突变驱动基因的列表包括已确立的驱动基因和其他在癌症中作用理解不足的基因。该 ML 模型可作为网络应用程序使用。作为一个案例研究,我们专注于非受体酪氨酸激酶(NRTK),并在激活的 CDC42 激酶-1(ACK1)中发现了一个反复出现的突变,该突变破坏了 ACK1 C 末端的 Mig6 同源区(MHR)和泛素结合(UBA)结构域。通过在培养细胞中研究这些结构域,我们发现 MHR 结构域的破坏有助于激活激酶,而 UBA 结构域的破坏通过阻止其溶酶体降解增加了激酶的稳定性。这种 ACK1 突变类似于其姐妹激酶 TNK1 中的淋巴瘤相关突变,后者也破坏了 C 末端抑制基序和 UBA 结构域。这项研究为研究界建立了一个突变驱动基因发现工具,并确定了 ACK 家族激酶中共同存在的 ACK1 过度激活的机制。

启示

这项研究确定了 ACK1 中可能可靶向的激活突变以及其他可能的致癌突变,包括破坏 PTM 的突变,以供进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a0/10831333/facffc93ba23/137fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验