Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, Atlanta, GA, United States of America.
J Radiol Prot. 2023 Oct 30;43(4):041507. doi: 10.1088/1361-6498/ad0409.
In biokinetic modeling systems employed for radiation protection, biological retention and excretion have been modeled as a series of discretized compartments representing the organs and tissues of the human body. Fractional retention and excretion in these organ and tissue systems have been mathematically governed by a series of coupled first-order ordinary differential equations (ODEs). The coupled ODE systems comprising the biokinetic models are usually stiff due to the severe difference between rapid and slow transfers between compartments. In this study, the capabilities of solving a complex coupled system of ODEs for biokinetic modeling were evaluated by comparing different Python programming language solvers and solving methods with the motivation of establishing a framework that enables multi-level analysis. The stability of the solvers was analyzed to select the best performers for solving the biokinetic problems. A Python-based linear algebraic method was also explored to examine how the numerical methods deviated from an analytical or semi-analytical method. Results demonstrated that customized implicit methods resulted in an enhanced stable solution for the inhaledCo (Type M) andI (Type F) exposure scenarios for the inhalation pathway of the International Commission on Radiological Protection (ICRP) Publication 130 Human Respiratory Tract Model (HRTM). The customized implementation of the Python-based implicit solvers resulted in approximately consistent solutions with the Python-based matrix exponential method (). The differences generally observed between the implicit solvers andare attributable to numerical precision and the order of numerical approximation of the numerical solvers. This study provides the first analysis of a list of Python ODE solvers and methods by comparing their usage for solving biokinetic models using the ICRP Publication 130 HRTM and provides a framework for the selection of the most appropriate ODE solvers and methods in Python language to implement for modeling the distribution of internal radioactivity.
在用于辐射防护的生物动力学建模系统中,生物保留和排泄已被建模为一系列离散的隔室,代表人体的器官和组织。这些器官和组织系统中的分数保留和排泄已通过一系列耦合的一阶常微分方程 (ODE) 进行数学控制。构成生物动力学模型的耦合 ODE 系统通常由于隔室之间快速和缓慢转移之间的严重差异而变得僵硬。在这项研究中,通过比较不同的 Python 编程语言求解器和求解方法,评估了求解复杂耦合 ODE 系统的能力,目的是建立一个能够进行多层次分析的框架。分析了求解器的稳定性,以选择解决生物动力学问题的最佳求解器。还探索了基于 Python 的线性代数方法,以检查数值方法如何偏离分析或半分析方法。结果表明,针对吸入途径的国际辐射防护委员会 (ICRP) 出版物 130 人类呼吸道模型 (HRTM),针对吸入 Co (M 型) 和 I (F 型) 暴露情况的定制隐式方法产生了增强的稳定解。基于 Python 的隐式求解器的定制实现导致与基于 Python 的矩阵指数方法 () 的解决方案大致一致。隐式求解器之间的差异通常归因于数值精度和数值求解器的数值逼近阶数。本研究通过比较它们在使用 ICRP 出版物 130 HRTM 解决生物动力学模型方面的使用情况,首次分析了一系列 Python ODE 求解器和方法,并为在 Python 语言中选择最适合的 ODE 求解器和方法提供了框架,以实现内部放射性分布的建模。