School of Medicine, University of Galway, Galway, Ireland; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.
School of Medicine, University of Galway, Galway, Ireland; UMRS Inserm 1256 NGERE (Nutrition-Genetics-Environmental Risks), Institute of Medical Research (Pôle BMS) - University of Lorraine, Vandoeuvre-les-Nancy, France.
Cell Rep Methods. 2023 Oct 23;3(10):100615. doi: 10.1016/j.crmeth.2023.100615. Epub 2023 Oct 16.
Understanding the effects of the microbiome on the host's metabolism is core to enlightening the role of the microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association pattern analyses, combining microbiome metabolome association studies with in silico constraint-based community modeling. Via theoretical dissection of confounding and causal paths, we show that in silico in vivo association pattern analyses allow for causal inference on microbiome-metabolome relations in observational data. We justify the corresponding theoretical criterion by structural equation modeling of host-microbiome systems, integrating deterministic microbiome community modeling into population statistics approaches. We show the feasibility of our approach on a published multi-omics dataset (n = 347), demonstrating causal microbiome-metabolite relations for 26 out of 54 fecal metabolites. In summary, we generate a promising approach for causal inference in metabolic host-microbiome interactions by integrating hypothesis-free screening association studies with knowledge-based in silico modeling.
理解微生物组对宿主代谢的影响是阐明微生物组在健康和疾病中的作用的核心。在此,我们开发了一种基于计算的体内关联模式分析范例,将微生物组-代谢组关联研究与基于计算的基于约束的群落建模相结合。通过对混杂和因果路径的理论剖析,我们表明,基于计算的体内关联模式分析允许在观察性数据中对微生物组-代谢组关系进行因果推断。我们通过整合确定性微生物群落建模到群体统计方法中的宿主-微生物组系统的结构方程模型,为相应的理论标准提供了依据。我们在一个已发表的多组学数据集(n = 347)上展示了我们方法的可行性,为 54 种粪便代谢物中的 26 种确定了因果微生物-代谢物关系。总之,我们通过将无假设筛选关联研究与基于知识的基于计算的建模相结合,为代谢宿主-微生物相互作用中的因果推断生成了一种很有前景的方法。