文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物组、宿主生物标志物和颈动脉粥样硬化尿液代谢组之间的相互作用网络。

Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis.

机构信息

Department of Geriatric Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.

Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.

出版信息

Front Cell Infect Microbiol. 2021 Oct 7;11:708088. doi: 10.3389/fcimb.2021.708088. eCollection 2021.


DOI:10.3389/fcimb.2021.708088
PMID:34692558
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8529068/
Abstract

Comprehensive analyses of multi-omics data may provide insights into interactions between different biological layers concerning distinct clinical features. We integrated data on the gut microbiota, blood parameters and urine metabolites of treatment-naive individuals presenting a wide range of metabolic disease phenotypes to delineate clinically meaningful associations. Trans-omics correlation networks revealed that candidate gut microbial biomarkers and urine metabolite feature were covaried with distinct clinical phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome revealed that variations in one of these three systems correlated with changes in the other two. In a specific note about clinical parameters of liver function, we identified Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills, Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with blood biomarkers for liver diseases. Variations in these microbiota features paralleled changes in specific urine metabolites. Network modeling yielded two core clusters including one large gut microbe-urine metabolite close-knit cluster and one triangular cluster composed of a gut microbe-blood-urine network, demonstrating close inter-system crosstalk especially between the gut microbiome and the urine metabolome. Distinct clinical phenotypes are manifested in both the gut microbiome and the urine metabolome, and inter-domain connectivity takes the form of high-dimensional networks. Such networks may further our understanding of complex biological systems, and may provide a basis for identifying biomarkers for diseases. Deciphering the complexity of human physiology and disease requires a holistic and trans-omics approach integrating multi-layer data sets, including the gut microbiome and profiles of biological fluids. By studying the gut microbiome on carotid atherosclerosis, we identified microbial features associated with clinical parameters, and we observed that groups of urine metabolites correlated with groups of clinical parameters. Combining the three data sets, we revealed correlations of entities across the three systems, suggesting that physiological changes are reflected in each of the omics. Our findings provided insights into the interactive network between the gut microbiome, blood clinical parameters and the urine metabolome concerning physiological variations, and showed the promise of trans-omics study for biomarker discovery.

摘要

综合分析多组学数据可以深入了解不同生物学层面之间的相互作用,这些生物学层面与不同的临床特征有关。我们整合了来自治疗初治患者的肠道微生物组、血液参数和尿液代谢物的数据,以描绘具有临床意义的关联。跨组学相关网络显示,候选肠道微生物生物标志物和尿液代谢物特征与不同的临床表型相关。肠道微生物组、尿液代谢组和表型的整合表明,这三个系统中的一个系统的变化与另外两个系统的变化相关。在关于肝功能的临床参数的特别说明中,我们确定了 Eubacterium eligens、Faecalibacterium prausnitzii 和 Ruminococcus lactaris 与肝功能健康相关,而 Clostridium bolteae、Tyzzerella nexills、Ruminococcus gnavus、Blautia hansenii 和 Atopobium parvulum 与肝功能疾病的血液生物标志物相关。这些微生物特征的变化与特定尿液代谢物的变化平行。网络建模产生了两个核心簇,包括一个由肠道微生物-尿液代谢物紧密相连的簇和一个由肠道微生物-血液-尿液网络组成的三角形簇,表明系统间的密切相互作用,特别是肠道微生物组和尿液代谢组之间的相互作用。不同的临床表型在肠道微生物组和尿液代谢组中均有表现,并且域间连接采用高维网络的形式。这种网络可以帮助我们深入了解复杂的生物系统,并为识别疾病的生物标志物提供依据。揭示人类生理学和疾病的复杂性需要采用整体和跨组学方法,整合包括肠道微生物组和生物流体特征在内的多层数据集。通过研究颈动脉粥样硬化的肠道微生物组,我们确定了与临床参数相关的微生物特征,并观察到与临床参数相关的尿液代谢物组。将这三个数据集结合起来,我们揭示了这三个系统之间实体的相关性,表明生理变化反映在每个组学中。我们的研究结果提供了关于肠道微生物组、血液临床参数和尿液代谢组之间与生理变化有关的相互作用网络的深入了解,并展示了跨组学研究在生物标志物发现方面的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/a5636d709fe0/fcimb-11-708088-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/f2f5277a74cc/fcimb-11-708088-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/0b38b01918f3/fcimb-11-708088-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/91b7651895c1/fcimb-11-708088-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/6c55a956f33d/fcimb-11-708088-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/71885c9b0f9f/fcimb-11-708088-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/a5636d709fe0/fcimb-11-708088-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/f2f5277a74cc/fcimb-11-708088-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/0b38b01918f3/fcimb-11-708088-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/91b7651895c1/fcimb-11-708088-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/6c55a956f33d/fcimb-11-708088-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/71885c9b0f9f/fcimb-11-708088-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c929/8529068/a5636d709fe0/fcimb-11-708088-g006.jpg

相似文献

[1]
Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis.

Front Cell Infect Microbiol. 2021

[2]
Alterations of host-gut microbiome interactions in multiple sclerosis.

EBioMedicine. 2022-2

[3]
Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke.

J Transl Med. 2022-10-8

[4]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[5]
Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice.

Gut Microbes. 2024

[6]
Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia.

EBioMedicine. 2019-7-18

[7]
A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations.

Microbiome. 2021-10-12

[8]
Alterations in the Gut Microbiome and Metabolisms in Pregnancies with Fetal Growth Restriction.

Microbiol Spectr. 2023-6-15

[9]
Multi-omics analyses reveal the specific changes in gut metagenome and serum metabolome of patients with polycystic ovary syndrome.

Front Microbiol. 2022-10-19

[10]
Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.

Methods. 2018-4-30

引用本文的文献

[1]
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review.

Life (Basel). 2025-8-7

[2]
Gut microbiota regulate atherosclerosis via the gut-vascular axis: a scoping review of mechanisms and therapeutic interventions.

Front Microbiol. 2025-8-8

[3]
Jianpi Huayu Prescription Prevents Atherosclerosis by Improving Inflammation and Reshaping the Intestinal Microbiota in ApoE Mice.

Cell Biochem Biophys. 2024-9

[4]
Ginger essential oil prevents NASH progression by blocking the NLRP3 inflammasome and remodeling the gut microbiota-LPS-TLR4 pathway in mice.

Nutr Diabetes. 2024-8-16

[5]
Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning.

Front Mol Biosci. 2024-1-19

[6]
A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine.

Metabolites. 2023-10-9

[7]
Associations between the Gut Microbiota, Urinary Metabolites, and Diet in Women during the Third Trimester of Pregnancy.

Curr Dev Nutr. 2022-12-24

[8]
Networks as Biomarkers: Uses and Purposes.

Genes (Basel). 2023-2-8

[9]
Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults.

Diabetes Care. 2022-4-1

本文引用的文献

[1]
Thyroid Dysfunction and Atherosclerosis: A Systematic Review.

In Vivo. 2020

[2]
Association Between Serum Bilirubin and the Progression of Carotid Atherosclerosis in Type 2 Diabetes.

J Lipid Atheroscler. 2020-1

[3]
20-Hydroxyecdysone ameliorates metabolic and cardiovascular dysfunction in high-fat-high-fructose-fed ovariectomized rats.

BMC Complement Med Ther. 2020-5-6

[4]
Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice.

J Nutr Biochem. 2018-2-27

[5]
Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.

Gigascience. 2018-3-1

[6]
Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment.

Nat Commun. 2017-11-27

[7]
The gut microbiome in atherosclerotic cardiovascular disease.

Nat Commun. 2017-10-10

[8]
Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention.

Nat Med. 2017-6-19

[9]
Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice.

ISME J. 2017-7

[10]
Role of gut microbiota in atherosclerosis.

Nat Rev Cardiol. 2016-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索