Department of Geriatric Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.
Front Cell Infect Microbiol. 2021 Oct 7;11:708088. doi: 10.3389/fcimb.2021.708088. eCollection 2021.
Comprehensive analyses of multi-omics data may provide insights into interactions between different biological layers concerning distinct clinical features. We integrated data on the gut microbiota, blood parameters and urine metabolites of treatment-naive individuals presenting a wide range of metabolic disease phenotypes to delineate clinically meaningful associations. Trans-omics correlation networks revealed that candidate gut microbial biomarkers and urine metabolite feature were covaried with distinct clinical phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome revealed that variations in one of these three systems correlated with changes in the other two. In a specific note about clinical parameters of liver function, we identified Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills, Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with blood biomarkers for liver diseases. Variations in these microbiota features paralleled changes in specific urine metabolites. Network modeling yielded two core clusters including one large gut microbe-urine metabolite close-knit cluster and one triangular cluster composed of a gut microbe-blood-urine network, demonstrating close inter-system crosstalk especially between the gut microbiome and the urine metabolome. Distinct clinical phenotypes are manifested in both the gut microbiome and the urine metabolome, and inter-domain connectivity takes the form of high-dimensional networks. Such networks may further our understanding of complex biological systems, and may provide a basis for identifying biomarkers for diseases. Deciphering the complexity of human physiology and disease requires a holistic and trans-omics approach integrating multi-layer data sets, including the gut microbiome and profiles of biological fluids. By studying the gut microbiome on carotid atherosclerosis, we identified microbial features associated with clinical parameters, and we observed that groups of urine metabolites correlated with groups of clinical parameters. Combining the three data sets, we revealed correlations of entities across the three systems, suggesting that physiological changes are reflected in each of the omics. Our findings provided insights into the interactive network between the gut microbiome, blood clinical parameters and the urine metabolome concerning physiological variations, and showed the promise of trans-omics study for biomarker discovery.
综合分析多组学数据可以深入了解不同生物学层面之间的相互作用,这些生物学层面与不同的临床特征有关。我们整合了来自治疗初治患者的肠道微生物组、血液参数和尿液代谢物的数据,以描绘具有临床意义的关联。跨组学相关网络显示,候选肠道微生物生物标志物和尿液代谢物特征与不同的临床表型相关。肠道微生物组、尿液代谢组和表型的整合表明,这三个系统中的一个系统的变化与另外两个系统的变化相关。在关于肝功能的临床参数的特别说明中,我们确定了 Eubacterium eligens、Faecalibacterium prausnitzii 和 Ruminococcus lactaris 与肝功能健康相关,而 Clostridium bolteae、Tyzzerella nexills、Ruminococcus gnavus、Blautia hansenii 和 Atopobium parvulum 与肝功能疾病的血液生物标志物相关。这些微生物特征的变化与特定尿液代谢物的变化平行。网络建模产生了两个核心簇,包括一个由肠道微生物-尿液代谢物紧密相连的簇和一个由肠道微生物-血液-尿液网络组成的三角形簇,表明系统间的密切相互作用,特别是肠道微生物组和尿液代谢组之间的相互作用。不同的临床表型在肠道微生物组和尿液代谢组中均有表现,并且域间连接采用高维网络的形式。这种网络可以帮助我们深入了解复杂的生物系统,并为识别疾病的生物标志物提供依据。揭示人类生理学和疾病的复杂性需要采用整体和跨组学方法,整合包括肠道微生物组和生物流体特征在内的多层数据集。通过研究颈动脉粥样硬化的肠道微生物组,我们确定了与临床参数相关的微生物特征,并观察到与临床参数相关的尿液代谢物组。将这三个数据集结合起来,我们揭示了这三个系统之间实体的相关性,表明生理变化反映在每个组学中。我们的研究结果提供了关于肠道微生物组、血液临床参数和尿液代谢组之间与生理变化有关的相互作用网络的深入了解,并展示了跨组学研究在生物标志物发现方面的前景。
Front Cell Infect Microbiol. 2021
EBioMedicine. 2022-2
Microbiol Spectr. 2023-6-15
J Lipid Atheroscler. 2020-1
BMC Complement Med Ther. 2020-5-6
Gigascience. 2018-3-1
Nat Commun. 2017-10-10
Nat Rev Cardiol. 2016-12-1