文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

粪便代谢组和肠道微生物组之间的关键相互作用揭示了脑缺血性中风的功能特征。

Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke.

机构信息

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250003, China.

Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, 25000, China.

出版信息

J Transl Med. 2022 Oct 8;20(1):459. doi: 10.1186/s12967-022-03669-0.


DOI:10.1186/s12967-022-03669-0
PMID:36209079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9548195/
Abstract

BACKGROUND: Integrative analysis approaches of metagenomics and metabolomics have been widely developed to understand the association between disease and the gut microbiome. However, the different profiling patterns of different metabolic samples in the association analysis make it a matter of concern which type of sample is the most closely associated with gut microbes and disease. To address this lack of knowledge, we investigated the association between the gut microbiome and metabolomic profiles of stool, urine, and plasma samples from ischemic stroke patients and healthy subjects. METHODS: We performed metagenomic sequencing (feces) and untargeted metabolomics analysis (feces, plasma, and urine) from ischemic stroke patients and healthy volunteers. Differential analyses were conducted to find key differential microbiota and metabolites for ischemic stroke. Meanwhile, Spearman's rank correlation and linear regression analyses were used to study the association between microbiota and metabolites of different metabolic mixtures. RESULTS: Untargeted metabolomics analysis shows that feces had the most abundant features and identified metabolites, followed by urine and plasma. Feces had the highest number of differential metabolites between ischemic stroke patients and the healthy group. Based on the association analysis between metagenomics and metabolomics of fecal, urine, and plasma, fecal metabolome showed the strongest association with the gut microbiome. There are 1073, 191, and 81 statistically significant pairs (P < 0.05) in the correlation analysis for fecal, urine, and plasma metabolome. Fecal metabolites explained the variance of alpha-diversity of the gut microbiome up to 31.1%, while urine and plasma metabolites only explained the variance of alpha-diversity up to 13.5% and 10.6%. Meanwhile, there were more significant differential metabolites in feces than urine and plasma associated with the stroke marker bacteria. CONCLUSIONS: The systematic association analysis between gut microbiome and metabolomics reveals that fecal metabolites show the strongest association with the gut microbiome, followed by urine and plasma. The findings would promote the association study between the gut microbiome and fecal metabolome to explore key factors that are associated with diseases. We also provide a user-friendly web server and a R package to facilitate researchers to conduct the association analysis of gut microbiome and metabolomics.

摘要

背景: 元基因组学和代谢组学的综合分析方法已经被广泛开发,以了解疾病与肠道微生物组之间的关联。然而,在关联分析中,不同代谢样本的不同分析模式引起了人们的关注,即哪种类型的样本与肠道微生物和疾病的关联最密切。为了解决这方面的知识空白,我们调查了缺血性脑卒中患者和健康受试者的粪便、尿液和血浆样本的肠道微生物组与代谢组学图谱之间的关联。

方法: 我们对缺血性脑卒中患者和健康志愿者的粪便进行了元基因组测序(粪便)和非靶向代谢组学分析(粪便、血浆和尿液)。进行差异分析以找到缺血性脑卒中的关键差异微生物群和代谢物。同时,使用 Spearman 秩相关和线性回归分析来研究不同代谢混合物的微生物群和代谢物之间的关联。

结果: 非靶向代谢组学分析表明,粪便具有最丰富的特征和鉴定出的代谢物,其次是尿液和血浆。粪便中缺血性脑卒中患者与健康组之间的差异代谢物数量最多。基于粪便、尿液和血浆的元基因组学和代谢组学之间的关联分析,粪便代谢组与肠道微生物组的关联最强。在粪便、尿液和血浆代谢组的相关性分析中,有 1073、191 和 81 对具有统计学意义的配对(P < 0.05)。粪便代谢物可解释肠道微生物组 α多样性的变化高达 31.1%,而尿液和血浆代谢物仅可解释 α 多样性的变化高达 13.5%和 10.6%。同时,粪便中与脑卒中标志物细菌相关的差异代谢物比尿液和血浆中更多。

结论: 肠道微生物组与代谢组学的系统关联分析表明,粪便代谢物与肠道微生物组的关联最强,其次是尿液和血浆。这些发现将促进肠道微生物组与粪便代谢组之间的关联研究,以探索与疾病相关的关键因素。我们还提供了一个用户友好的网络服务器和一个 R 包,以方便研究人员进行肠道微生物组和代谢组学的关联分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/2bfd546505c0/12967_2022_3669_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/b356ddb296e3/12967_2022_3669_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/7d904dc87d14/12967_2022_3669_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/4f8fe2411c60/12967_2022_3669_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/8d736707576e/12967_2022_3669_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/3cdd9e740d6e/12967_2022_3669_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/d3b6709c2d12/12967_2022_3669_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/69d609c7a816/12967_2022_3669_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/2bfd546505c0/12967_2022_3669_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/b356ddb296e3/12967_2022_3669_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/7d904dc87d14/12967_2022_3669_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/4f8fe2411c60/12967_2022_3669_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/8d736707576e/12967_2022_3669_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/3cdd9e740d6e/12967_2022_3669_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/d3b6709c2d12/12967_2022_3669_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/69d609c7a816/12967_2022_3669_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f6/9548195/2bfd546505c0/12967_2022_3669_Fig8_HTML.jpg

相似文献

[1]
Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke.

J Transl Med. 2022-10-8

[2]
Fecal and serum metabolomic signatures and gut microbiota characteristics of allergic rhinitis mice model.

Front Cell Infect Microbiol. 2023

[3]
Comparison of Fecal Collection Methods on Variation in Gut Metagenomics and Untargeted Metabolomics.

mSphere. 2021-10-27

[4]
Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies.

Front Cell Infect Microbiol. 2018-8-28

[5]
Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis.

mBio. 2020-2-18

[6]
Gut microbiome and metabolome to discover pathogenic bacteria and probiotics in ankylosing spondylitis.

Front Immunol. 2024

[7]
The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches.

Gigascience. 2019-3-1

[8]
Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles.

mSphere. 2020-1-8

[9]
Assessment of Oral Vancomycin-Induced Alterations in Gut Bacterial Microbiota and Metabolome of Healthy Men.

Front Cell Infect Microbiol. 2021

[10]
Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill.

J Ethnopharmacol. 2019-8-8

引用本文的文献

[1]
Metabolomics reveals key biomarkers for ischemic stroke: a systematic review of emerging evidence.

Front Neurol. 2025-8-8

[2]
Comparative effects of raw and processed cistanche glycosides on the HPT axis and gut microbiota in a rat model of kidney-yang deficiency.

Front Pharmacol. 2025-7-25

[3]
Novel opportunity of treatment for psycho-cardiologic disease by gut microbiome.

Front Cardiovasc Med. 2025-7-22

[4]
The regulation of neuroinflammatory response after stroke by intestinal flora microorganisms.

Front Cell Infect Microbiol. 2025-6-23

[5]
Anti-Toxoplasma gondii efficacy of beta, beta-dimethylacrylshikonin and isobutyrylshikonin in vitro and in vivo.

Parasit Vectors. 2025-6-9

[6]
Associations of fecal and blood microbiota-related metabolites with gut microbiota and type 2 diabetes in HIV infection.

AIDS. 2025-9-1

[7]
Intestinal injury and changes of the gut microbiota after ischemic stroke.

Front Cell Neurosci. 2025-4-17

[8]
Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions.

J Microbiol Biotechnol. 2025-3-11

[9]
Disruption of Gut Microbiota and Associated Fecal Metabolites in Collagen-Induced Arthritis Mice During the Early Stage.

J Inflamm Res. 2025-2-4

[10]
Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke.

Metabolites. 2024-10-16

本文引用的文献

[1]
Correction to: Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: a population-based longitudinal cohort study in Chinese adults.

Diabetologia. 2022-9

[2]
Microbiome and metabolome features of the cardiometabolic disease spectrum.

Nat Med. 2022-2

[3]
Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease.

Nat Med. 2022-2

[4]
Phenylacetylglutamine, a Novel Biomarker in Acute Ischemic Stroke.

Front Cardiovasc Med. 2021-12-23

[5]
Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients.

Front Cell Infect Microbiol. 2021

[6]
Gut-Derived Metabolite Phenylacetylglutamine and White Matter Hyperintensities in Patients With Acute Ischemic Stroke.

Front Aging Neurosci. 2021-7-30

[7]
Integrated 16S rRNA Gene Sequencing and LC-MS Analysis Revealed the Interplay Between Gut Microbiota and Plasma Metabolites in Rats With Ischemic Stroke.

J Mol Neurosci. 2021-10

[8]
Fecal microbiome and metabolome differ in healthy and food-allergic twins.

J Clin Invest. 2021-1-19

[9]
The role of the gut microbiome and its metabolites in metabolic diseases.

Protein Cell. 2021-5

[10]
Recent Advances in Cell-Based Therapies for Ischemic Stroke.

Int J Mol Sci. 2020-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索