Suppr超能文献

人类丘脑的低频振荡与强化学习过程中的预期价值和结果相关。

Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning.

机构信息

Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.

Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA.

出版信息

Nat Commun. 2023 Oct 17;14(1):6534. doi: 10.1038/s41467-023-42380-6.

Abstract

Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.

摘要

基于强化的自适应决策被认为招募额-纹状体回路。额-纹状体回路的一个关键节点是丘脑。然而,其在人类强化学习中的作用仍缺乏直接证据。我们通过分析八名参与者在执行强化学习任务时的丘脑内电生理记录来解决这一差距。我们发现,在前丘脑(ATN)和背内侧丘脑(DMTN)中,低频振荡(LFO,4-12 Hz)与基于计算模型在奖励学习(在结果传递后)或惩罚学习(在选择过程中)期间估计的预期价值呈正相关。此外,从 ATN/DMTN 记录的 LFO 也与结果呈负相关,因此奖励预测误差的两个组成部分都在人类丘脑中有信号。在奖励和惩罚条件下预测信号的差异揭示了惩罚回避学习中动作抑制的神经机制。我们的研究结果为人类基于强化的决策中丘脑的作用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/160f/10582006/84e2abacac64/41467_2023_42380_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验