Suppr超能文献

用于预测慢性偏头痛患者的特征性振荡脑网络。

Characteristic oscillatory brain networks for predicting patients with chronic migraine.

机构信息

Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.

School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

J Headache Pain. 2023 Oct 18;24(1):139. doi: 10.1186/s10194-023-01677-z.

Abstract

To determine specific resting-state network patterns underlying alterations in chronic migraine, we employed oscillatory connectivity and machine learning techniques to distinguish patients with chronic migraine from healthy controls and patients with other pain disorders. This cross-sectional study included 350 participants (70 healthy controls, 100 patients with chronic migraine, 40 patients with chronic migraine with comorbid fibromyalgia, 35 patients with fibromyalgia, 30 patients with chronic tension-type headache, and 75 patients with episodic migraine). We collected resting-state magnetoencephalographic data for analysis. Source-based oscillatory connectivity within each network, including the pain-related network, default mode network, sensorimotor network, visual network, and insula to default mode network, was examined to determine intrinsic connectivity across a frequency range of 1-40 Hz. Features were extracted to establish and validate classification models constructed using machine learning algorithms. The findings indicated that oscillatory connectivity revealed brain network abnormalities in patients with chronic migraine compared with healthy controls, and that oscillatory connectivity exhibited distinct patterns between various pain disorders. After the incorporation of network features, the best classification model demonstrated excellent performance in distinguishing patients with chronic migraine from healthy controls, achieving high accuracy on both training and testing datasets (accuracy > 92.6% and area under the curve > 0.93). Moreover, in validation tests, classification models exhibited high accuracy in discriminating patients with chronic migraine from all other groups of patients (accuracy > 75.7% and area under the curve > 0.8). In conclusion, oscillatory synchrony within the pain-related network and default mode network corresponded to altered neurophysiological processes in patients with chronic migraine. Thus, these networks can serve as pivotal signatures in the model for identifying patients with chronic migraine, providing reliable and generalisable results. This approach may facilitate the objective and individualised diagnosis of migraine.

摘要

为了确定慢性偏头痛患者中改变的特定静息状态网络模式,我们采用了振荡连通性和机器学习技术,将慢性偏头痛患者与健康对照组和其他疼痛障碍患者区分开来。这项横断面研究包括 350 名参与者(70 名健康对照组、100 名慢性偏头痛患者、40 名伴有纤维肌痛共病的慢性偏头痛患者、35 名纤维肌痛患者、30 名慢性紧张型头痛患者和 75 名发作性偏头痛患者)。我们收集了静息状态脑磁图数据进行分析。在每个网络(包括疼痛相关网络、默认模式网络、感觉运动网络、视觉网络和岛叶默认模式网络)中,我们检查了源基振荡连通性,以确定在 1-40 Hz 的频率范围内的固有连通性。提取特征以建立和验证使用机器学习算法构建的分类模型。研究结果表明,与健康对照组相比,慢性偏头痛患者的振荡连通性显示出大脑网络异常,并且不同疼痛障碍之间的振荡连通性表现出不同的模式。在纳入网络特征后,最佳分类模型在区分慢性偏头痛患者与健康对照组方面表现出出色的性能,在训练和测试数据集上均具有很高的准确性(准确性>92.6%,曲线下面积>0.93)。此外,在验证测试中,分类模型在区分慢性偏头痛患者与所有其他患者组方面表现出很高的准确性(准确性>75.7%,曲线下面积>0.8)。总之,疼痛相关网络和默认模式网络内的振荡同步对应于慢性偏头痛患者中改变的神经生理过程。因此,这些网络可以作为模型中识别慢性偏头痛患者的关键特征,提供可靠和可推广的结果。这种方法可能有助于偏头痛的客观和个体化诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c13/10583316/f3937f5781ea/10194_2023_1677_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验