Suppr超能文献

使用单一机构与全州入院出院转介系统筛选高需求人群。

Screening for the high-need population using single institution versus state-wide admissions discharge transfer feed.

机构信息

Section of Hospital Medicine, Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, 2525 West End Ave, Nashville, TN, 37212, USA.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

BMC Health Serv Res. 2023 Oct 17;23(1):1111. doi: 10.1186/s12913-023-10017-5.

Abstract

BACKGROUND

Access to programs for high-needs patients depending on single-institution electronic health record data (EHR) carries risks of biased sampling. We investigate a statewide admission, discharge, and transfer feed (ADT) in assessing equity in access to these programs.

METHODS

This is a retrospective cross-sectional study. We included high-need patients at Vanderbilt University Medical Center (VUMC) 18 years or older, with at least three emergency visits (ED) or hospitalizations in Tennessee from January 1 to June 30, 2021, including at least one at VUMC. We used the Tennessee ADT database to identify high-need patients with at least one VUMC ED/hospitalization. Then, we compared this population with high-need patients identified using VUMC's Epic® EHR database. The primary outcome was the sensitivity of VUMC-only criteria for identifying high-need patients compared to the statewide ADT reference standard.

RESULTS

We identified 2549 patients with at least one ED/hospitalization and assessed them as high-need based on the statewide ADT. Of those, 2100 had VUMC-only visits, and 449 had VUMC and non-VUMC visits. VUMC-only visit screening criteria showed high sensitivity (99.1%, 95% CI: 98.7 - 99.5%), showing that the high-needs patients admitted to VUMC infrequently access alternative systems. Results showed no meaningful difference in sensitivity when stratified by patient's race or insurance.

CONCLUSIONS

ADT allows examination for potential selection bias when relying upon single-institution utilization. In VUMC's high-need patients, there's minimal selection bias when depending on same-site utilization. Further research must understand how biases vary by site and durability over time.

摘要

背景

依赖单一机构电子健康记录数据(EHR)的高需求患者计划的准入存在选择偏倚的风险。我们通过全州范围的入院、出院和转院(ADT)数据来评估这些计划准入的公平性。

方法

这是一项回顾性的横断面研究。我们纳入了范德比尔特大学医学中心(VUMC)年龄在 18 岁及以上的高需求患者,他们在 2021 年 1 月 1 日至 6 月 30 日期间在田纳西州至少有三次急诊就诊(ED)或住院治疗,其中至少一次在 VUMC。我们使用田纳西州 ADT 数据库来识别至少在 VUMC 有一次 ED/住院的高需求患者。然后,我们将该人群与使用 VUMC 的 Epic® EHR 数据库识别的高需求患者进行比较。主要结局是 VUMC 专有标准识别高需求患者的敏感性与全州 ADT 参考标准相比。

结果

我们确定了 2549 名至少有一次 ED/住院的患者,并根据全州 ADT 将他们评估为高需求患者。其中,2100 名患者仅在 VUMC 就诊,449 名患者在 VUMC 和非 VUMC 就诊。VUMC 专有就诊筛选标准具有很高的敏感性(99.1%,95%置信区间:98.7-99.5%),表明很少有高需求患者经常到 VUMC 以外的系统就诊。按患者种族或保险分层时,敏感性无显著差异。

结论

ADT 允许在依赖单一机构利用情况时检查潜在的选择偏倚。在 VUMC 的高需求患者中,依赖同一地点的利用情况时,选择偏倚很小。进一步的研究必须了解站点之间的偏差和随时间推移的偏差的耐久性。

相似文献

本文引用的文献

4
Building Trust to Promote a More Equitable Health Care System.建立信任以促进更公平的医疗保健系统。
Ann Intern Med. 2021 Apr;174(4):548-549. doi: 10.7326/M20-6984. Epub 2021 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验