Stein-Montalvo Lucia, Guerra Arman, Almeida Kanani, Kodio Ousmane, Holmes Douglas P
Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA.
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E. 2023 Sep;108(3-2):035002. doi: 10.1103/PhysRevE.108.035002.
Thin sheets respond to confinement by smoothly wrinkling or by focusing stress into small, sharp regions. From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures. Using experiments and molecular dynamics simulations, we probe the confinement response of circular sheets, flattened in their central region and quasistatically drawn through a ring. Wrinkles develop in the outer, free region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones sequentially pattern the sheet until axisymmetry is recovered in most geometries. The cone size is sensitive to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This paper contributes to the characterization of general confinement of thin sheets, while broadening the understanding of the d cone, a fundamental element of stress focusing, as it appears in realistic settings.
薄片会通过平滑起皱或将应力集中到小的尖锐区域来响应约束。从工程到生物学、地质学、纺织品和艺术领域,薄片以各种各样的方式被包裹和约束,然而关于应力如何在这些结构中集中以及图案如何形成,仍然存在一些基本问题。我们通过实验和分子动力学模拟,研究了在中心区域变平并通过一个环准静态拉伸的圆形薄片的约束响应。皱纹在外部的自由区域形成,然后被一个截头圆锥体取代,这个圆锥体是在向应力集中的突然转变中形成的。我们探讨了与这一事件相关的力以及皱纹的数量如何取决于几何形状。在大多数几何形状中,额外的圆锥体会依次在薄片上形成图案,直到恢复轴对称性。圆锥体的大小对平面内的几何形状很敏感。我们揭示了这种几何依赖性的粗粒度描述,它会根据接近渐近d圆锥体极限(夹具尺寸趋近于零)的程度而发散。本文有助于对薄片一般约束的表征,同时拓宽了对d圆锥体(应力集中的一个基本元素)在实际环境中出现情况的理解。