Kutz J Nathan, Nachbin André, Baddoo Peter J, Bush John W M
Department of Applied Mathematics and Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA.
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts 01742, USA.
Phys Rev E. 2023 Sep;108(3-1):034213. doi: 10.1103/PhysRevE.108.034213.
We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a confined one-dimensional geometry and apply the dynamic mode decomposition (DMD) in order to characterize the evolution of the wave field as the bath's vibrational acceleration is increased progressively. Dynamic mode decomposition provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of spatiotemporal data. Thus, DMD reduces the complex nonlinear interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD modes characterizing the wave field. In particular, it provides a low-dimensional characterization of the bifurcation structure of the pilot-wave physics, wherein the excitation and recruitment of additional modes in the linear superposition models the bifurcation sequence. This DMD characterization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave field and the droplet statistics allows us to characterize the evolution of the emergent statistics with increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical framework with the same basic structure as quantum mechanics, specifically a wave theory that predicts particle statistics.
我们对导波流体动力系统进行了数据驱动的表征,其中一个弹跳的液滴在振动浴的表面上自行推进。我们考虑在受限的一维几何结构中的液滴运动,并应用动态模式分解(DMD)来表征随着浴的振动加速度逐渐增加时波场的演化。动态模式分解提供了一个回归框架,用于在时空数据的快照上自适应地学习最佳拟合线性动力学模型。因此,DMD将导波与液滴之间复杂的非线性相互作用简化为表征波场的DMD模式的低维线性叠加。特别是,它提供了导波物理分叉结构的低维表征,其中线性叠加中额外模式的激发和招募模拟了分叉序列。这种DMD表征为弹跳液滴问题提供了一个全新的视角,与量子力学的数学机制建立了有价值的新联系。具体而言,分析表明,随着振动加速度的增加,导波场经历了一系列霍普夫分叉,最终导致混沌波场。导波平均场与液滴统计之间已建立的关系使我们能够根据导波场的演化,随着振动强迫的增加来表征出现的统计量的演化。因此,我们开发了一个具有与量子力学相同基本结构的数值框架,具体来说是一种预测粒子统计量的波动理论。