Leonov Andrey O
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashi Hiroshima, Hiroshima 739-8511, Japan.
Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, Hiroshima 739-8526, Japan.
Phys Chem Chem Phys. 2023 Nov 1;25(42):28691-28702. doi: 10.1039/d3cp03034b.
In noncentrosymmetric magnets, chiral Dzyaloshinskii-Moriya interactions (DMI) provide a distinctive mechanism for the stabilization of localized skyrmion states in two and three dimensions with a fixed sense of rotation. Near the ordering transition, the skyrmion strings develop attractive skyrmion-skyrmion interactions and ultimately become confined in extended clusters or textures [A. O. Leonov and U. K. Rößler, , 2023, , 891], which is a consequence of the coupling between the magnitude and the angular part of the order parameter. Multi-skyrmionic states built from isolated skyrmions (IS) can form multiple modulated magnetic phases that may underlie the exotic magnetic phenomena of "partial order" or the field-driven "A-phase" observed in MnSi and other cubic helimagnets. Based on the standard phenomenological Dzyaloshinskii model, we obtain numerically exact solutions for skyrmion lattices (SkL), formulate their basic properties, and elucidate physical mechanisms of their formation and stability. Our detailed numerical studies show that the bound skyrmion states arise as hexagonal lattices of ±π-skyrmions (with the magnetization in the center along or opposite to the magnetic field) or square staggered lattices of π/2-skyrmions, which contain defect lines with zero modulus value and thus may form thermodynamically stable states only near the ordering temperature. In the simplest case of a two-dimensional (2D) skyrmionic texture, the structure is homogeneous in the third dimension (3D). The skyrmions preserve an ideal axisymmetric "double twist" core in condensed phases, while continuation into a space-filling texture is frustrated. The evolution of skyrmion lattices in an increasing magnetic field leads to a succession of phase transitions of first or second kind between diverse textures and finally ends due to the formation of isolated skyrmion-filaments with fixed radius and shape embedded in a homogeneously magnetized matrix. In the framework of the phenomenological model including only isotropic interactions (exchange, Zeeman, and DM energy contributions), the considered skyrmion lattices are only metastable states as the competing conical one-dimensional spiral forms the equilibrium state. But due to the weak couplings between skyrmions, secondary effects like anisotropies can stabilize skyrmionic textures as compared to simple helices. Also the topological nature of skyrmion condensates makes the magnetization processes in chiral magnets history-dependent and hysteretic.
在非中心对称磁体中,手性的Dzyaloshinskii-Moriya相互作用(DMI)为二维和三维中具有固定旋转方向的局域斯格明子态的稳定提供了一种独特机制。在有序转变附近,斯格明子弦发展出吸引性的斯格明子-斯格明子相互作用,并最终被限制在扩展的团簇或织构中[A. O. Leonov和U. K. Rößler, , 2023, , 891],这是序参量的大小和角向部分之间耦合的结果。由孤立斯格明子(IS)构建的多斯格明子态可以形成多个调制磁相,这可能是在MnSi和其他立方螺旋磁体中观察到的“部分有序”或场驱动的“A相”等奇异磁现象的基础。基于标准的唯象Dzyaloshinskii模型,我们获得了斯格明子晶格(SkL)的数值精确解,阐述了它们的基本性质,并阐明了它们形成和稳定的物理机制。我们详细的数值研究表明,束缚斯格明子态以±π - 斯格明子的六边形晶格(中心磁化沿磁场方向或与磁场方向相反)或π/2 - 斯格明子的方形交错晶格出现,其中包含模量值为零的缺陷线,因此仅在有序温度附近可能形成热力学稳定态。在二维(2D)斯格明子织构的最简单情况下,结构在第三维(3D)中是均匀的。斯格明子在凝聚相中保留理想的轴对称“双扭曲”核心,而延续到空间填充织构则受到阻碍。在增加的磁场中斯格明子晶格的演化导致不同织构之间发生一系列第一类或第二类相变,最终由于形成嵌入均匀磁化基质中的具有固定半径和形状的孤立斯格明子细丝而结束。在仅包括各向同性相互作用(交换、塞曼和DM能量贡献)的唯象模型框架内,所考虑的斯格明子晶格只是亚稳态,因为竞争的锥形一维螺旋形成平衡态。但由于斯格明子之间的弱耦合,与简单螺旋相比,诸如各向异性等次要效应可以使斯格明子织构稳定。斯格明子凝聚态的拓扑性质也使得手性磁体中的磁化过程依赖于历史且具有滞后性。