Gullón Pedro, Fry Dustin, Plascak Jesse J, Mooney Stephen J, Lovasi Gina S
Public Health and Epidemiology Research Group. Department of Surgery, Social and Medical Sciences. School of Medicine and Health Sciences, Universidad de Alcala, Alcala de Henares, Madrid, Spain.
Centre for Urban Research, RMIT University, Melbourne, Australia.
Cities Health. 2023;7(5):823-829. doi: 10.1080/23748834.2023.2207931. Epub 2023 May 17.
Few studies have used longitudinal imagery of Google Street View (GSV) despite its potential for measuring changes in urban streetscapes characteristics relevant to health, such as neighborhood disorder. Neighborhood disorder has been previously associated with health outcomes. We conducted a feasibility study exploring image availability over time in the Philadelphia metropolitan region and describing changes in neighborhood disorder in this region between 2009, 2014, and 2019. Our team audited Street View images from 192 street segments in the Philadelphia Metropolitan Region. On each segment, we measured the number of images available through time, and for locations where imagery from more than one time point was available, we collected 8 neighborhood disorder indicators at 3 different times (up to 2009, up to 2014, and up to 2019). More than 70% of streets segments had at least one image. Neighborhood disorder increased between 2009 and 2019. Future studies should study the determinants of change of neighborhood disorder using longitudinal GSV imagery.
尽管谷歌街景(GSV)的纵向图像有潜力用于测量与健康相关的城市街道景观特征的变化,如邻里失序,但很少有研究使用它。邻里失序此前已被证明与健康结果相关。我们进行了一项可行性研究,探索费城大都市区随时间推移的图像可用性,并描述该地区在2009年、2014年和2019年期间邻里失序的变化。我们的团队审核了费城大都市区192个街道段的街景图像。在每个街道段,我们测量了随时间可用的图像数量,对于有多个时间点图像的位置,我们在3个不同时间(截至2009年、截至2014年和截至2019年)收集了8个邻里失序指标。超过70%的街道段至少有一张图像。2009年至2019年间,邻里失序有所增加。未来的研究应使用纵向GSV图像研究邻里失序变化的决定因素。