Xiong Wei, Yeung Neil, Wang Shubo, Liao Haofu, Wang Liyun, Luo Jiebo
Department of Computer Science, University of Rochester, Rochester, USA.
Department of Mechanical Engineering, University of Delaware, USA.
BME Front. 2022 Apr 2;2022:9763284. doi: 10.34133/2022/9763284. eCollection 2022.
. We adopt a deep learning model for bone osteolysis prediction on computed tomography (CT) images of murine breast cancer bone metastases. Given the bone CT scans at previous time steps, the model incorporates the bone-cancer interactions learned from the sequential images and generates future CT images. Its ability of predicting the development of bone lesions in cancer-invading bones can assist in assessing the risk of impending fractures and choosing proper treatments in breast cancer bone metastasis. . Breast cancer often metastasizes to bone, causes osteolytic lesions, and results in skeletal-related events (SREs) including severe pain and even fatal fractures. Although current imaging techniques can detect macroscopic bone lesions, predicting the occurrence and progression of bone lesions remains a challenge. . We adopt a temporal variational autoencoder (T-VAE) model that utilizes a combination of variational autoencoders and long short-term memory networks to predict bone lesion emergence on our micro-CT dataset containing sequential images of murine tibiae. Given the CT scans of murine tibiae at early weeks, our model can learn the distribution of their future states from data. . We test our model against other deep learning-based prediction models on the bone lesion progression prediction task. Our model produces much more accurate predictions than existing models under various evaluation metrics. . We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions. It will assist in planning and evaluating treatment strategies to prevent SREs in breast cancer patients.
我们采用一种深度学习模型,用于在小鼠乳腺癌骨转移的计算机断层扫描(CT)图像上预测骨溶解。给定先前时间步长的骨CT扫描图像,该模型融合从序列图像中学习到的骨癌相互作用,并生成未来的CT图像。其预测癌症侵袭性骨中骨病变发展的能力有助于评估即将发生骨折的风险,并为乳腺癌骨转移选择合适的治疗方法。乳腺癌常转移至骨,导致溶骨性病变,并引发包括严重疼痛甚至致命骨折在内的骨相关事件(SREs)。尽管当前的成像技术能够检测到宏观的骨病变,但预测骨病变的发生和进展仍然是一项挑战。我们采用一种时间变分自编码器(T-VAE)模型,该模型利用变分自编码器和长短期记忆网络的组合,在包含小鼠胫骨序列图像的微型CT数据集上预测骨病变的出现。给定小鼠胫骨早期几周的CT扫描图像,我们的模型能够从数据中学习其未来状态的分布。我们在骨病变进展预测任务中,将我们的模型与其他基于深度学习的预测模型进行测试。在各种评估指标下,我们的模型比现有模型产生更准确的预测。我们开发了一个深度学习框架,能够准确预测并可视化溶骨性骨病变的进展。它将有助于规划和评估治疗策略,以预防乳腺癌患者发生SREs。