Suppr超能文献

相似文献

1
QSMGAN: Improved Quantitative Susceptibility Mapping using 3D Generative Adversarial Networks with increased receptive field.
Neuroimage. 2020 Feb 15;207:116389. doi: 10.1016/j.neuroimage.2019.116389. Epub 2019 Nov 21.
2
MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping.
Neuroimage. 2021 Oct 15;240:118376. doi: 10.1016/j.neuroimage.2021.118376. Epub 2021 Jul 8.
3
Plug-and-Play latent feature editing for orientation-adaptive quantitative susceptibility mapping neural networks.
Med Image Anal. 2024 May;94:103160. doi: 10.1016/j.media.2024.103160. Epub 2024 Mar 25.
4
Quantitative susceptibility mapping using deep neural network: QSMnet.
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.
5
DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping.
Neuroimage. 2019 Jul 15;195:373-383. doi: 10.1016/j.neuroimage.2019.03.060. Epub 2019 Mar 29.
6
Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs.
Front Neurosci. 2023 Jun 13;17:1165446. doi: 10.3389/fnins.2023.1165446. eCollection 2023.
7
Affine transformation edited and refined deep neural network for quantitative susceptibility mapping.
Neuroimage. 2023 Feb 15;267:119842. doi: 10.1016/j.neuroimage.2022.119842. Epub 2022 Dec 29.
8
Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.
Neuroimage. 2018 Oct 1;179:166-175. doi: 10.1016/j.neuroimage.2018.06.036. Epub 2018 Jun 15.
10
Instant tissue field and magnetic susceptibility mapping from MRI raw phase using Laplacian enhanced deep neural networks.
Neuroimage. 2022 Oct 1;259:119410. doi: 10.1016/j.neuroimage.2022.119410. Epub 2022 Jun 23.

引用本文的文献

1
Incorporating information in deep learning models for quantitative susceptibility mapping via adaptive convolution.
Front Neurosci. 2024 Mar 11;18:1366165. doi: 10.3389/fnins.2024.1366165. eCollection 2024.
2
Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Autoencoders.
BME Front. 2022 Apr 2;2022:9763284. doi: 10.34133/2022/9763284. eCollection 2022.
3
Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs.
Front Neurosci. 2023 Jun 13;17:1165446. doi: 10.3389/fnins.2023.1165446. eCollection 2023.
4
U-Net-Based Models towards Optimal MR Brain Image Segmentation.
Diagnostics (Basel). 2023 May 4;13(9):1624. doi: 10.3390/diagnostics13091624.
5
DeepSTI: Towards tensor reconstruction using fewer orientations in susceptibility tensor imaging.
Med Image Anal. 2023 Jul;87:102829. doi: 10.1016/j.media.2023.102829. Epub 2023 Apr 26.
6
DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI.
J Magn Reson Imaging. 2023 Oct;58(4):1200-1210. doi: 10.1002/jmri.28622. Epub 2023 Feb 2.
7
[A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Dec 20;42(12):1799-1806. doi: 10.12122/j.issn.1673-4254.2022.12.07.
8
The role of generative adversarial networks in brain MRI: a scoping review.
Insights Imaging. 2022 Jun 4;13(1):98. doi: 10.1186/s13244-022-01237-0.
9
Revisiting brain iron deficiency in restless legs syndrome using magnetic resonance imaging.
Neuroimage Clin. 2022;34:103024. doi: 10.1016/j.nicl.2022.103024. Epub 2022 Apr 26.
10
HFP-QSMGAN: QSM from homodyne-filtered phase images.
Magn Reson Med. 2022 Sep;88(3):1255-1262. doi: 10.1002/mrm.29260. Epub 2022 Apr 5.

本文引用的文献

1
DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping.
Neuroimage. 2019 Jul 15;195:373-383. doi: 10.1016/j.neuroimage.2019.03.060. Epub 2019 Mar 29.
2
Toward Automatic Detection of Radiation-Induced Cerebral Microbleeds Using a 3D Deep Residual Network.
J Digit Imaging. 2019 Oct;32(5):766-772. doi: 10.1007/s10278-018-0146-z.
4
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
5
Medical Image Synthesis with Deep Convolutional Adversarial Networks.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
6
Quantitative susceptibility mapping using deep neural network: QSMnet.
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.
7
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.
8
Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
J Magn Reson Imaging. 2018 Aug;48(2):330-340. doi: 10.1002/jmri.25970. Epub 2018 Feb 13.
9
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
10
Computationally Efficient Combination of Multi-channel Phase Data From Multi-echo Acquisitions (ASPIRE).
Magn Reson Med. 2018 Jun;79(6):2996-3006. doi: 10.1002/mrm.26963. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验