Li Yue, Zheng Tianfang, Du Yixuan, Zhao Binyu, Patel Himanshu P, Boldt Regine, Auernhammer Günter K, Fery Andreas, Li Junbai, Thiele Julian
School of Life Sciences, Jilin University, 130012 Changchun, PR China; Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, 130012 Changchun, PR China.
J Colloid Interface Sci. 2024 Jan 15;654(Pt A):405-412. doi: 10.1016/j.jcis.2023.09.191. Epub 2023 Oct 1.
Dipeptides can be self-assembled via non-covalent bonds towards functional nanostructures for diverse applications in nanotechnology. Here, we introduce a convenient microfluidics-guided dipeptide design as a platform for photodegradation of contaminants in water. Titanium dioxide (TiO) nanoparticles (NPs) are chosen as photocatalysts due to their vastly studied properties. By using a well-defined microchannel architecture, the dipeptide N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) and TiO NPs are efficiently mixed leading to a self-assembled Fmoc-FF hydrogel with embedded TiO. Owing to shear-thinning and rapid self-healing of Fmoc-FF hydrogels, we can transfer and inject Fmoc-FF/TiO hydrogels into any other microdevice for specific applications, where these low-molecular-weight-gelator- (LMWG-)based Fmoc-FF hydrogels fill out the microchannel volume. Different morphologies of Fmoc-FF/TiO hydrogels are obtained by simple concentration screening of TiO NPs and Fmoc-FF. Owing to the density of the three-dimensionally twined Fmoc-FF nanofibers, solutions swelling the dipeptide hydrogel can be exchanged without leaching out TiO NPs. By further analysis, our hydrogel-filled flow cell can be employed for continuous-flow photodegradation in water under light irradiation. Especially, compared to the TiO NPs suspension, Fmoc-FF/TiO hydrogels with relatively low concentrations of TiO exhibit enhanced photodegradation capabilities due to better dispersion of nanoparticles. Such strategy provides a versatile platform for embedment of small inorganic catalysts or enzymes for (bio-)chemical conversion of solutes passing through the hydrogel network.
二肽可以通过非共价键自组装形成功能性纳米结构,用于纳米技术的各种应用。在此,我们介绍一种便捷的微流控引导二肽设计,作为水中污染物光降解的平台。由于二氧化钛(TiO₂)纳米颗粒(NPs)的性质已得到广泛研究,因此被选作光催化剂。通过使用定义明确的微通道结构,二肽N-芴甲氧羰基二苯基丙氨酸(Fmoc-FF)与TiO₂ NPs能有效混合,形成嵌入TiO₂的Fmoc-FF自组装水凝胶。由于Fmoc-FF水凝胶具有剪切变稀和快速自愈的特性,我们可以将Fmoc-FF/TiO₂水凝胶转移并注入任何其他微器件中用于特定应用,其中这些基于低分子量凝胶剂(LMWG)的Fmoc-FF水凝胶会填充微通道体积。通过对TiO₂ NPs和Fmoc-FF进行简单的浓度筛选,可获得不同形态的Fmoc-FF/TiO₂水凝胶。由于三维缠绕的Fmoc-FF纳米纤维的密度,使二肽水凝胶溶胀的溶液可以进行交换,而不会使TiO₂ NPs浸出。通过进一步分析,我们的水凝胶填充流动池可用于在光照下对水中的污染物进行连续流光降解。特别是,与TiO₂ NPs悬浮液相比,TiO₂浓度相对较低的Fmoc-FF/TiO₂水凝胶由于纳米颗粒的更好分散而表现出增强的光降解能力。这种策略为嵌入小型无机催化剂或酶以对通过水凝胶网络的溶质进行(生物)化学转化提供了一个通用平台。