文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微流控生物材料的新兴趋势:从功能设计到应用

Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.

作者信息

Lin Jiaqi, Cui Lijuan, Shi Xiaokun, Wu Shuping

机构信息

Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.


DOI:10.3390/jfb16050166
PMID:40422832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12112458/
Abstract

The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials-from silicon and glass to polymers and paper-and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.

摘要

微流控技术的快速发展推动了材料工程领域的创新,尤其是通过其在微观尺度上精确操控流体和细胞的能力。微流控生物材料作为一个将微流控技术与生物材料科学相结合的前沿交叉领域,正在彻底改变生物医学研究。本文综述聚焦于通过3D生物打印技术对芯片器官(OoAC)平台进行功能设计与制造,探讨生物材料在药物递送、细胞培养和组织工程中的应用,并评估微流控系统在推进个性化医疗方面的潜力。我们系统分析了微流控材料从硅、玻璃到聚合物和纸张的演变过程,并突出了3D生物打印相较于传统制造方法的优势。目前,尽管微流控技术在医学领域取得了显著进展,但在可扩展性、稳定性和临床转化方面仍存在挑战。微流控生物材料的未来将取决于将3D生物打印与动态功能设计相结合,开发将传统模具与生物打印结构相结合的混合策略,以及利用人工智能实时监测药物递送或组织反应。我们相信,材料科学、微加工技术和临床医学之间的跨学科合作将加速芯片器官平台转化为个性化治疗方法和高通量药物筛选工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/88dd302a79ae/jfb-16-00166-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/d4e62362b406/jfb-16-00166-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/45d1d6a294d9/jfb-16-00166-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/7cd3e3ac470b/jfb-16-00166-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/0d4477120869/jfb-16-00166-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/efe3f34cf417/jfb-16-00166-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/a2623eb629d5/jfb-16-00166-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/ade58421f166/jfb-16-00166-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/6043ff98038e/jfb-16-00166-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/9292dd278fa0/jfb-16-00166-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/88dd302a79ae/jfb-16-00166-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/d4e62362b406/jfb-16-00166-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/45d1d6a294d9/jfb-16-00166-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/7cd3e3ac470b/jfb-16-00166-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/0d4477120869/jfb-16-00166-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/efe3f34cf417/jfb-16-00166-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/a2623eb629d5/jfb-16-00166-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/ade58421f166/jfb-16-00166-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/6043ff98038e/jfb-16-00166-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/9292dd278fa0/jfb-16-00166-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d3/12112458/88dd302a79ae/jfb-16-00166-g009.jpg

相似文献

[1]
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.

J Funct Biomater. 2025-5-8

[2]
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.

Acta Biomater. 2016-4-1

[3]
Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology.

Cells Tissues Organs. 2025

[4]
Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication.

Int J Mol Sci. 2023-2-6

[5]
Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms.

Biomater Sci. 2025-2-25

[6]
Microfluidic-assisted engineering of hydrogels with microscale complexity.

Acta Biomater. 2025-6-1

[7]
Breakthroughs and Applications of Organ-on-a-Chip Technology.

Cells. 2022-6-2

[8]
A critical review on advances and challenges of bioprinted cardiac patches.

Acta Biomater. 2024-11

[9]
Bioprinting on Organ-on-Chip: Development and Applications.

Biosensors (Basel). 2022-12-6

[10]
Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.

Biosensors (Basel). 2024-6-8

本文引用的文献

[1]
Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications.

J Mater Chem B. 2025-2-19

[2]
Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts.

Gels. 2024-12-26

[3]
Microfluidics for Nanomedicine Delivery.

ACS Biomater Sci Eng. 2025-2-10

[4]
Functionalization of Polyethylene Terephthalate (PETE) Membranes for the Enhancement of Cellular Adhesion in Organ-on-a-Chip Devices.

ACS Appl Mater Interfaces. 2025-1-22

[5]
Three-Dimensional Bioprinting for Retinal Tissue Engineering.

Biomimetics (Basel). 2024-12-1

[6]
Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation.

Eur J Pharm Biopharm. 2025-2

[7]
Thermal bubble single-cell printing chip: High-throughput, wide-field, and efficient.

Biomicrofluidics. 2024-11-26

[8]
Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics.

NPJ Aging. 2024-11-26

[9]
Micro- and nano-fibers for organ-on-a-chip: Construction, applications, and prospects.

Mater Today Bio. 2024-10-31

[10]
Advances in materials and technologies for digital light processing 3D printing.

Nano Converg. 2024-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索