Lin Jiaqi, Cui Lijuan, Shi Xiaokun, Wu Shuping
Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials-from silicon and glass to polymers and paper-and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.
微流控技术的快速发展推动了材料工程领域的创新,尤其是通过其在微观尺度上精确操控流体和细胞的能力。微流控生物材料作为一个将微流控技术与生物材料科学相结合的前沿交叉领域,正在彻底改变生物医学研究。本文综述聚焦于通过3D生物打印技术对芯片器官(OoAC)平台进行功能设计与制造,探讨生物材料在药物递送、细胞培养和组织工程中的应用,并评估微流控系统在推进个性化医疗方面的潜力。我们系统分析了微流控材料从硅、玻璃到聚合物和纸张的演变过程,并突出了3D生物打印相较于传统制造方法的优势。目前,尽管微流控技术在医学领域取得了显著进展,但在可扩展性、稳定性和临床转化方面仍存在挑战。微流控生物材料的未来将取决于将3D生物打印与动态功能设计相结合,开发将传统模具与生物打印结构相结合的混合策略,以及利用人工智能实时监测药物递送或组织反应。我们相信,材料科学、微加工技术和临床医学之间的跨学科合作将加速芯片器官平台转化为个性化治疗方法和高通量药物筛选工具。
J Funct Biomater. 2025-5-8
Int J Mol Sci. 2023-2-6
Acta Biomater. 2025-6-1
Acta Biomater. 2024-11
Biosensors (Basel). 2022-12-6
Biosensors (Basel). 2024-6-8
J Mater Chem B. 2025-2-19
ACS Biomater Sci Eng. 2025-2-10
ACS Appl Mater Interfaces. 2025-1-22
Biomimetics (Basel). 2024-12-1
Eur J Pharm Biopharm. 2025-2
Biomicrofluidics. 2024-11-26
Mater Today Bio. 2024-10-31
Nano Converg. 2024-11-4