Suppr超能文献

用于医学图像联邦学习的动态合成图像

Dynamically Synthetic Images for Federated Learning of medical images.

作者信息

Wu Jacky Chung-Hao, Yu Hsuan-Wen, Tsai Tsung-Hung, Lu Henry Horng-Shing

机构信息

Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.

Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC; Department of Statistics and Data Science, Cornell University, New York, USA.

出版信息

Comput Methods Programs Biomed. 2023 Dec;242:107845. doi: 10.1016/j.cmpb.2023.107845. Epub 2023 Oct 11.

Abstract

BACKGROUND

To develop deep learning models for medical diagnosis, it is important to collect more medical data from several medical institutions. Due to the regulations for privacy concerns, it is infeasible to collect data from various medical institutions to one institution for centralized learning. Federated Learning (FL) provides a feasible approach to jointly train the deep learning model with data stored in various medical institutions instead of collected together. However, the resulting FL models could be biased towards institutions with larger training datasets.

METHODOLOGY

In this study, we propose the applicable method of Dynamically Synthetic Images for Federated Learning (DSIFL) that aims to integrate the information of local institutions with heterogeneous types of data. The main technique of DSIFL is to develop a synthetic method that can dynamically adjust the number of synthetic images similar to local data that are misclassified by the current model. The resulting global model can handle the diversity in heterogeneous types of data collected in local medical institutions by including the training of synthetic images similar to misclassified cases in local collections.

RESULTS

In model performance evaluation metrics, we focus on the accuracy of each client's dataset. Finally, the accuracy of the model of DSIFL in the experiments can achieve the higher accuracy of the FL approach.

CONCLUSION

In this study, we propose the framework of DSIFL that achieves improvements over the conventional FL approach. We conduct empirical studies with two kinds of medical images. We compare the performance by variants of FL vs. DSIFL approaches. The performance by individual training is used as the baseline, whereas the performance by centralized learning is used as the target for the comparison studies. The empirical findings suggest that the DSIFL has improved performance over the FL via the technique of dynamically synthetic images in training.

摘要

背景

为了开发用于医学诊断的深度学习模型,从多个医疗机构收集更多医学数据很重要。由于隐私问题的相关规定,将数据从各个医疗机构收集到一个机构进行集中学习是不可行的。联邦学习(FL)提供了一种可行的方法,可利用存储在各个医疗机构中的数据联合训练深度学习模型,而不是将数据集中收集。然而,由此产生的联邦学习模型可能会偏向于拥有较大训练数据集的机构。

方法

在本研究中,我们提出了适用于联邦学习的动态合成图像方法(DSIFL),旨在整合具有异构数据类型的本地机构的信息。DSIFL的主要技术是开发一种合成方法,该方法可以动态调整与当前模型误分类的本地数据相似的合成图像数量。通过在本地数据集中纳入与误分类病例相似的合成图像训练,最终得到的全局模型可以处理本地医疗机构收集的异构数据类型中的多样性。

结果

在模型性能评估指标方面,我们关注每个客户端数据集的准确性。最后,实验中DSIFL模型的准确性可以达到联邦学习方法的更高准确性。

结论

在本研究中,我们提出了DSIFL框架,该框架相对于传统的联邦学习方法有改进。我们使用两种医学图像进行了实证研究。我们比较了联邦学习变体与DSIFL方法的性能。将个体训练的性能用作基线,而将集中学习的性能用作比较研究的目标。实证结果表明,DSIFL通过训练中的动态合成图像技术在性能上优于联邦学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验