Oz Annabelle, Nitzan Abraham, Hod Oded, Peralta Juan E
Department of Physical Chemistry, School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103, United States.
J Chem Theory Comput. 2023 Nov 14;19(21):7496-7504. doi: 10.1021/acs.jctc.3c00311. Epub 2023 Oct 18.
A first-principles approach to describe electron dynamics in open quantum systems driven far from equilibrium via external time-dependent stimuli is introduced. Within this approach, the driven Liouville-von Neumann methodology is used to impose open boundary conditions on finite model systems whose dynamics is described using time-dependent density functional theory. As a proof of concept, the developed methodology is applied to simple spin-compensated model systems, including a hydrogen chain and a graphitic molecular junction. Good agreement between steady-state total currents obtained via direct propagation and those obtained from the self-consistent solution of the corresponding Sylvester equation indicates the validity of the implementation. The capability of the new computational approach to analyze, from first principles, non-equilibrium dynamics of open quantum systems in terms of temporally and spatially resolved current densities is demonstrated. Future extensions of the approach toward the description of dynamical magnetization and decoherence effects are briefly discussed.
本文介绍了一种第一性原理方法,用于描述通过外部随时间变化的刺激驱动到远离平衡态的开放量子系统中的电子动力学。在这种方法中,驱动的刘维尔 - 冯·诺依曼方法被用于对有限模型系统施加开放边界条件,该模型系统的动力学使用含时密度泛函理论来描述。作为概念验证,所开发的方法应用于简单的自旋补偿模型系统,包括氢链和石墨分子结。通过直接传播获得的稳态总电流与从相应西尔维斯特方程的自洽解获得的电流之间的良好一致性表明了该实现的有效性。展示了这种新的计算方法从第一性原理出发,根据时间和空间分辨的电流密度来分析开放量子系统非平衡动力学的能力。简要讨论了该方法未来在描述动态磁化和退相干效应方面的扩展。