Suppr超能文献

Wnt 生物发生、分泌和 Wnt7 特异性信号转导的分子基础。

Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling.

机构信息

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cell. 2023 Nov 9;186(23):5028-5040.e14. doi: 10.1016/j.cell.2023.09.021. Epub 2023 Oct 17.

Abstract

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECK engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.

摘要

Wnt 蛋白在 ER 中被刺猬(PORCN)酶脂化,并与 Wnt 无(WLS)结合进行细胞内运输和分泌。目前尚不清楚控制这些低溶解度 Wnt 从 ER 转移到细胞外空间的机制。通过对参与中枢神经系统血管生成和血脑屏障维持的关键 Wnt7a 的结构和功能分析,我们阐明了 Wnt 生物发生和 Wnt7a 特异性信号转导的原理。Wnt7a-WLS 复合物与钙网蛋白(CALR)结合,表明 CALR 作为伴侣蛋白,在 Wnt 生物发生过程中促进 PORCN 向 WLS 转移 Wnt。我们的结构、功能分析和分子动力学模拟表明,WLS 结合的 Wnt 核心中的一种磷脂调节 Wnt 与 WLS 之间的结合和解离,提示存在一种脂质介导的 Wnt 分泌机制。最后,与细胞表面 Wnt7 共受体 RECK 结合的 Wnt7a 结构揭示了 RECK 如何与 Wnt7a 的 N 端结构域结合以激活 Wnt7a 特异性信号转导。

相似文献

1
Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling.
Cell. 2023 Nov 9;186(23):5028-5040.e14. doi: 10.1016/j.cell.2023.09.021. Epub 2023 Oct 17.
2
A RECK-WNT7 Receptor-Ligand Interaction Enables Isoform-Specific Regulation of Wnt Bioavailability.
Cell Rep. 2018 Oct 9;25(2):339-349.e9. doi: 10.1016/j.celrep.2018.09.045.
4
Responses of Porcupine and Wntless proteins to oxidative, hypoxic and endoplasmic reticulum stresses.
Cell Signal. 2021 Sep;85:110047. doi: 10.1016/j.cellsig.2021.110047. Epub 2021 May 17.
5
Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt.
Biochem Soc Trans. 2022 Dec 16;50(6):1763-1772. doi: 10.1042/BST20220634.
6
Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling.
Exp Cell Res. 2016 Sep 10;347(1):171-183. doi: 10.1016/j.yexcr.2016.07.028. Epub 2016 Aug 1.
7
Porcupine-mediated lipidation is required for Wnt recognition by Wls.
Dev Biol. 2012 Jan 15;361(2):392-402. doi: 10.1016/j.ydbio.2011.11.003. Epub 2011 Nov 11.
8
The role of Evi/Wntless in exporting Wnt proteins.
Development. 2023 Feb 15;150(3). doi: 10.1242/dev.201352. Epub 2023 Feb 10.
9
Structural Basis of WLS/Evi-Mediated Wnt Transport and Secretion.
Cell. 2021 Jan 7;184(1):194-206.e14. doi: 10.1016/j.cell.2020.11.038. Epub 2020 Dec 23.

引用本文的文献

2
CALR promotes corneal epithelial cell proliferation and migration through Wnt7a.
Mol Biol Rep. 2025 Jul 16;52(1):714. doi: 10.1007/s11033-025-10810-x.
4
Molecular insights into human phosphatidylserine synthase 2 and its regulation of SREBP pathways.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2501177122. doi: 10.1073/pnas.2501177122. Epub 2025 May 15.
5
Pulmonary fibrosis: from mechanisms to therapies.
J Transl Med. 2025 May 8;23(1):515. doi: 10.1186/s12967-025-06514-2.
6
Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction.
Nat Rev Mol Cell Biol. 2025 May;26(5):371-388. doi: 10.1038/s41580-024-00823-y. Epub 2025 Jan 24.
7
High-alcohol-producing Klebsiella pneumoniae aggravates lung injury by affecting neutrophils and the airway epithelium.
Cell Rep Med. 2025 Jan 21;6(1):101886. doi: 10.1016/j.xcrm.2024.101886. Epub 2025 Jan 2.
9
10
Clues into Wnt cell surface signalosomes and its biogenesis.
Trends Biochem Sci. 2024 Dec;49(12):1042-1045. doi: 10.1016/j.tibs.2024.09.007. Epub 2024 Oct 22.

本文引用的文献

1
Modulation of Wnt-β-catenin signaling with antibodies: therapeutic opportunities and challenges.
Trends Pharmacol Sci. 2023 Jun;44(6):354-365. doi: 10.1016/j.tips.2023.03.008. Epub 2023 Apr 19.
2
The logistics of Wnt production and delivery.
Curr Top Dev Biol. 2023;153:1-60. doi: 10.1016/bs.ctdb.2023.01.006. Epub 2023 Feb 25.
3
Structure of the Wnt-Frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2218238120. doi: 10.1073/pnas.2218238120. Epub 2023 Mar 9.
4
Molecular basis of MHC I quality control in the peptide loading complex.
Nat Commun. 2022 Aug 10;13(1):4701. doi: 10.1038/s41467-022-32384-z.
5
Mechanisms and inhibition of Porcupine-mediated Wnt acylation.
Nature. 2022 Jul;607(7920):816-822. doi: 10.1038/s41586-022-04952-2. Epub 2022 Jul 13.
6
Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders.
Science. 2022 Feb 18;375(6582):eabm4459. doi: 10.1126/science.abm4459.
7
Regulation of Wnt distribution and function by Drosophila glypicans.
J Cell Sci. 2022 Feb 1;135(3). doi: 10.1242/jcs.259405. Epub 2022 Feb 3.
8
A Human Pleiotropic Multiorgan Condition Caused by Deficient Wnt Secretion.
N Engl J Med. 2021 Sep 30;385(14):1292-1301. doi: 10.1056/NEJMoa2033911.
9
Cryo-EM structure of human Wntless in complex with Wnt3a.
Nat Commun. 2021 Jul 27;12(1):4541. doi: 10.1038/s41467-021-24731-3.
10
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验