文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发一种机器学习算法预测解剖型全肩关节置换术后肩盂组件无菌性松动的概率:一项回顾性、多中心研究方案。

Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomical total shoulder arthroplasty: protocol for a retrospective, multicentre study.

机构信息

Department of Orthopaedics and Sports Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

Alps Surgery Institute, Clinique Generale Annecy, Annecy, France.

出版信息

BMJ Open. 2023 Oct 18;13(10):e074700. doi: 10.1136/bmjopen-2023-074700.


DOI:10.1136/bmjopen-2023-074700
PMID:37852772
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10603397/
Abstract

INTRODUCTION: Despite technological advancements in recent years, glenoid component loosening remains a common complication after anatomical total shoulder arthroplasty (ATSA) and is one of the main causes of revision surgery. Increasing emphasis is placed on the prevention of glenoid component failure. Previous studies have successfully predicted range of motion, patient-reported outcomes and short-term complications after ATSA using machine learning methods, but an accurate predictive model for (glenoid component) revision is currently lacking. This study aims to use a large international database to accurately predict aseptic loosening of the glenoid component after ATSA using machine learning algorithms. METHODS AND ANALYSIS: For this multicentre, retrospective study, individual patient data will be compiled from previously published studies reporting revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies reporting outcomes of ATSA. Authors will be contacted and invited to participate in the Machine Learning Consortium by sharing their anonymised databases. All databases reporting revisions after ATSA will be included, and individual patients with a follow-up less than 2 years or a fracture as the indication for ATSA will be excluded. First, features (predictive variables) will be identified using a random forest feature selection. The resulting features from the compiled database will be used to train various machine learning algorithms (stochastic gradient boosting, random forest, support vector machine, neural network and elastic-net penalised logistic regression). The developed and validated algorithms will be evaluated across discrimination (c-statistic), calibration, the Brier score and the decision curve analysis. The best-performing algorithm will be used to create an open-access online prediction tool. ETHICS AND DISSEMINATION: Data will be collected adhering to the WHO regulation on data sharing. An Institutional Review Board review is not applicable. The study results will be published in a peer-reviewed journal.

摘要

简介:尽管近年来技术有所进步,但在解剖型全肩关节置换术(ATSA)后,肩盂假体松动仍然是一种常见并发症,也是翻修手术的主要原因之一。人们越来越重视预防肩盂假体失效。以前的研究已经成功地使用机器学习方法预测了 ATSA 后的活动范围、患者报告的结果和短期并发症,但目前缺乏准确预测(肩盂组件)翻修的模型。本研究旨在使用大型国际数据库,通过机器学习算法准确预测 ATSA 后肩盂假体的无菌性松动。

方法与分析:这项多中心回顾性研究将从先前发表的报道 ATSA 翻修的研究中汇编患者个体数据。将在 Medline(PubMed)中进行系统的文献检索,以确定所有报告 ATSA 结果的研究。作者将被联系并邀请通过共享他们的匿名数据库来参与机器学习联盟。所有报告 ATSA 后翻修的数据库都将被纳入,随访时间少于 2 年或骨折作为 ATSA 指征的个体患者将被排除在外。首先,使用随机森林特征选择来确定特征(预测变量)。将从编译数据库中得到的特征用于训练各种机器学习算法(随机梯度增强、随机森林、支持向量机、神经网络和弹性网惩罚逻辑回归)。开发和验证的算法将在判别力(c 统计量)、校准、Brier 评分和决策曲线分析方面进行评估。表现最好的算法将用于创建一个开放访问的在线预测工具。

伦理与传播:数据将按照世界卫生组织关于数据共享的规定进行收集。不需要机构审查委员会审查。研究结果将发表在同行评议的期刊上。

相似文献

[1]
Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomical total shoulder arthroplasty: protocol for a retrospective, multicentre study.

BMJ Open. 2023-10-18

[2]
What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty?

Clin Orthop Relat Res. 2020-10

[3]
Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set.

J Shoulder Elbow Surg. 2021-5

[4]
Comparison of complication types and rates associated with anatomic and reverse total shoulder arthroplasty.

J Shoulder Elbow Surg. 2021-4

[5]
Using machine learning to predict internal rotation after anatomic and reverse total shoulder arthroplasty.

J Shoulder Elbow Surg. 2022-5

[6]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[7]
Comparison of Humeral-Head Replacement with Glenoid-Reaming Arthroplasty (Ream and Run) Versus Anatomic Total Shoulder Arthroplasty: A Matched-Cohort Study.

J Bone Joint Surg Am. 2023-4-5

[8]
Is preoperative glenoid bone mineral density associated with aseptic glenoid implant loosening in anatomic total shoulder arthroplasty?

BMC Musculoskelet Disord. 2021-1-8

[9]
Clinical and radiographic outcomes following anatomic total shoulder arthroplasty utilizing an inset glenoid component at 2-year minimum follow-up: a dual center study.

J Shoulder Elbow Surg. 2023-6

[10]
Comparison of long-term clinical and radiological outcomes for cemented keel, cemented peg, and hybrid cage glenoids with anatomical total shoulder arthroplasty using the same humeral component.

Bone Joint J. 2023-6-1

引用本文的文献

[1]
Editorial: Modern advances in arthroplasty.

Front Surg. 2025-2-26

[2]
Development, validation and economic evaluation of a machine learning algorithm for predicting the probability of kidney damage in patients with hyperuricaemia: protocol for a retrospective study.

BMJ Open. 2024-11-28

[3]
A practical guide to the implementation of artificial intelligence in orthopaedic research-Part 2: A technical introduction.

J Exp Orthop. 2024-5-7

本文引用的文献

[1]
Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist.

BMJ. 2023-2-7

[2]
What is the optimal management of a loose glenoid component after anatomic total shoulder arthroplasty: a systematic review.

J Shoulder Elbow Surg. 2023-3

[3]
Reduced Revision Rates in Total Shoulder Arthroplasty With Crosslinked Polyethylene: Results From the Australian Orthopaedic Association National Joint Replacement Registry.

Clin Orthop Relat Res. 2022-10-1

[4]
Glenoid retroversion does not impact clinical outcomes or implant survivorship after total shoulder arthroplasty with minimal, noncorrective reaming.

JSES Int. 2022-3-18

[5]
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total Shoulder Replacements.

J Shoulder Elb Arthroplast. 2022-4-19

[6]
Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above.

Eur J Trauma Emerg Surg. 2022-12

[7]
Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning Algorithms.

Geriatr Orthop Surg Rehabil. 2021-12-13

[8]
Feasibility of Machine Learning and Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery.

J Bone Joint Surg Am. 2022-3-16

[9]
The association between critical shoulder angle and revision following anatomic total shoulder arthroplasty: a matched case-control study.

J Shoulder Elbow Surg. 2022-9

[10]
Machine Learning Can Predict Level of Improvement in Shoulder Arthroplasty.

JB JS Open Access. 2021-3-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索