Department of Orthopaedics and Sports Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
Alps Surgery Institute, Clinique Generale Annecy, Annecy, France.
BMJ Open. 2023 Oct 18;13(10):e074700. doi: 10.1136/bmjopen-2023-074700.
INTRODUCTION: Despite technological advancements in recent years, glenoid component loosening remains a common complication after anatomical total shoulder arthroplasty (ATSA) and is one of the main causes of revision surgery. Increasing emphasis is placed on the prevention of glenoid component failure. Previous studies have successfully predicted range of motion, patient-reported outcomes and short-term complications after ATSA using machine learning methods, but an accurate predictive model for (glenoid component) revision is currently lacking. This study aims to use a large international database to accurately predict aseptic loosening of the glenoid component after ATSA using machine learning algorithms. METHODS AND ANALYSIS: For this multicentre, retrospective study, individual patient data will be compiled from previously published studies reporting revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies reporting outcomes of ATSA. Authors will be contacted and invited to participate in the Machine Learning Consortium by sharing their anonymised databases. All databases reporting revisions after ATSA will be included, and individual patients with a follow-up less than 2 years or a fracture as the indication for ATSA will be excluded. First, features (predictive variables) will be identified using a random forest feature selection. The resulting features from the compiled database will be used to train various machine learning algorithms (stochastic gradient boosting, random forest, support vector machine, neural network and elastic-net penalised logistic regression). The developed and validated algorithms will be evaluated across discrimination (c-statistic), calibration, the Brier score and the decision curve analysis. The best-performing algorithm will be used to create an open-access online prediction tool. ETHICS AND DISSEMINATION: Data will be collected adhering to the WHO regulation on data sharing. An Institutional Review Board review is not applicable. The study results will be published in a peer-reviewed journal.
简介:尽管近年来技术有所进步,但在解剖型全肩关节置换术(ATSA)后,肩盂假体松动仍然是一种常见并发症,也是翻修手术的主要原因之一。人们越来越重视预防肩盂假体失效。以前的研究已经成功地使用机器学习方法预测了 ATSA 后的活动范围、患者报告的结果和短期并发症,但目前缺乏准确预测(肩盂组件)翻修的模型。本研究旨在使用大型国际数据库,通过机器学习算法准确预测 ATSA 后肩盂假体的无菌性松动。
方法与分析:这项多中心回顾性研究将从先前发表的报道 ATSA 翻修的研究中汇编患者个体数据。将在 Medline(PubMed)中进行系统的文献检索,以确定所有报告 ATSA 结果的研究。作者将被联系并邀请通过共享他们的匿名数据库来参与机器学习联盟。所有报告 ATSA 后翻修的数据库都将被纳入,随访时间少于 2 年或骨折作为 ATSA 指征的个体患者将被排除在外。首先,使用随机森林特征选择来确定特征(预测变量)。将从编译数据库中得到的特征用于训练各种机器学习算法(随机梯度增强、随机森林、支持向量机、神经网络和弹性网惩罚逻辑回归)。开发和验证的算法将在判别力(c 统计量)、校准、Brier 评分和决策曲线分析方面进行评估。表现最好的算法将用于创建一个开放访问的在线预测工具。
伦理与传播:数据将按照世界卫生组织关于数据共享的规定进行收集。不需要机构审查委员会审查。研究结果将发表在同行评议的期刊上。
J Shoulder Elbow Surg. 2021-5
J Shoulder Elbow Surg. 2021-4
J Shoulder Elbow Surg. 2022-5
Clin Orthop Relat Res. 2020-7
BMC Musculoskelet Disord. 2021-1-8
Front Surg. 2025-2-26
Geriatr Orthop Surg Rehabil. 2021-12-13
J Bone Joint Surg Am. 2022-3-16
JB JS Open Access. 2021-3-26