Suppr超能文献

机器学习算法预测高尿酸血症患者肾损伤概率的开发、验证和经济评估:一项回顾性研究方案。

Development, validation and economic evaluation of a machine learning algorithm for predicting the probability of kidney damage in patients with hyperuricaemia: protocol for a retrospective study.

机构信息

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

出版信息

BMJ Open. 2024 Nov 28;14(11):e086032. doi: 10.1136/bmjopen-2024-086032.

Abstract

INTRODUCTION

Accurate identification of the risk factors is essential for the effective prevention of hyperuricaemia (HUA)-related kidney damage. Previous studies have established the efficacy of machine learning (ML) methodologies in predicting kidney damage due to other chronic diseases. Nevertheless, a scarcity of precise and clinically applicable prediction models exists for assessing the risk of HUA-related kidney damage. This study aims to accurately predict the risk of developing HUA-related kidney damage using a ML algorithm, which is based on a retrospective database.

METHODS AND ANALYSIS

This retrospective study aims to collect clinical data on outpatients and inpatients from the Sichuan Provincial People's Hospital, China, covering the period from 1 January 2018 to 31 December 2021 with a focus on patients diagnosed with 'hyperuricaemia' or 'gout'. Predictive models will be constructed using techniques such as data imputation, sampling, feature selection and ML algorithms. This research will evaluate the predictive accuracy, interpretability and fairness of the developed models to determine their clinical applicability. The net benefit and net saving will be calculated to gauge the economic value of the model. The most effective model will then undergo external validation and be made available as an online predictive tool to facilitate user access.

ETHICS AND DISSEMINATION

The Ethics Review Committee at Sichuan Provincial People's Hospital granted approval for the ethical review of this study without requiring informed consent. The findings of the study will be disseminated in a peer-reviewed journal.

摘要

简介

准确识别风险因素对于有效预防高尿酸血症(HUA)相关肾损伤至关重要。先前的研究已经证实了机器学习(ML)方法在预测其他慢性疾病引起的肾损伤方面的有效性。然而,目前缺乏针对评估 HUA 相关肾损伤风险的精确且临床适用的预测模型。本研究旨在使用基于回顾性数据库的 ML 算法准确预测发生 HUA 相关肾损伤的风险。

方法与分析

本回顾性研究旨在收集来自中国四川省人民医院的门诊和住院患者的临床数据,时间范围为 2018 年 1 月 1 日至 2021 年 12 月 31 日,重点关注诊断为“高尿酸血症”或“痛风”的患者。预测模型将使用数据插补、抽样、特征选择和 ML 算法等技术构建。本研究将评估所开发模型的预测准确性、可解释性和公平性,以确定其临床适用性。将计算净效益和净节省,以衡量模型的经济价值。然后,最有效的模型将进行外部验证,并作为在线预测工具提供,以方便用户访问。

伦理与传播

四川省人民医院伦理审查委员会批准了本研究的伦理审查,无需获得知情同意。研究结果将在同行评议的期刊上发表。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验