Zhang Jianjun, Zhou Guojun, Un Hio-Ieng, Zheng Fulu, Jastrzembski Kamil, Wang Mingchao, Guo Quanquan, Mücke David, Qi Haoyuan, Lu Yang, Wang Zhiyong, Liang Yan, Löffler Markus, Kaiser Ute, Frauenheim Thomas, Mateo-Alonso Aurelio, Huang Zhehao, Sirringhaus Henning, Feng Xinliang, Dong Renhao
Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.
Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
J Am Chem Soc. 2023 Nov 1;145(43):23630-23638. doi: 10.1021/jacs.3c07682. Epub 2023 Oct 18.
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu(HFcHBC)) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 μm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu(HFcHBC) is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu(HFcHBC), with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.
二维共轭金属有机框架材料(2D c-MOFs)已成为一类新型的晶体层状导电材料,在电子学和自旋电子学领域具有巨大的应用潜力。然而,目前的二维共轭金属有机框架材料主要由有机平面配体制备,而由具有新颖轨道结构和电子态的弯曲或扭曲配体构建的层状二维共轭金属有机框架材料的研究仍较少。在此,我们报道了一种基于氟化核心扭曲的六羟基六咔唑六苯并蔻(HFcHBC)配体的铜-儿茶酚波浪状二维共轭金属有机框架材料(Cu(HFcHBC))。我们发现所得薄膜由长度可达约4μm的棒状单晶组成。通过高分辨率透射电子显微镜(HRTEM)和连续旋转电子衍射(cRED)解析了晶体结构,表明其为具有AA-重叠堆积的波浪状蜂窝晶格。基于理论计算预测Cu(HFcHBC)为金属性,而具有大量晶界的晶体薄膜样品在宏观尺度上明显表现出半导体行为,其特征为明显的热激活导电性。对孤立单晶器件进行的温度依赖电导率测量确实证明了Cu(HFcHBC)的金属性质,其具有非常微弱的热激活传输行为,室温电导率为5.2 S cm。此外,二维共轭金属有机框架材料可作为潜在的储能电极材料,在5 M LiCl水溶液电解质中表现出良好的容量(163.3 F g)和出色的循环稳定性。我们的工作表明,使用扭曲配体的波浪状二维共轭金属有机框架材料能够实现本征金属传输,标志着用于电子和能源应用的新型导电金属有机框架材料的出现。