Manna Fabio, Oggianu Mariangela, Auban-Senzier Pascale, Novitchi Ghenadie, Canadell Enric, Mercuri Maria Laura, Avarvari Narcis
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
Chem Sci. 2024 Oct 30;15(46):19247-19263. doi: 10.1039/d4sc05763e. eCollection 2024 Nov 27.
The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy(TTF-TC)(HO)]·21HO (1), reveals a complex 2D topology, with hexanuclear Dy clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material. Thanks to efficient TTF stacking and partial oxidation, 1 shows semiconducting behavior, with, however, a record conductivity value of 1 mS cm at room temperature, when compared to the previously reported TTF-based MOFs. Furthermore, temperature and magnetic field dependent ac (alternative current) magnetic susceptibility measurements demonstrate field induced slow relaxation of magnetization, accounting for two independent relaxation processes, with an energy barrier ( /) of around 12 K, typical for dysprosium carboxylate complexes. The herein reported 2D Dy-MOF provides a valuable master plan for coexistence of conducting π-TTF stacks and highly anisotropic Dy SMM properties.
本文报道了一种前所未有的镝(III)二维金属有机框架(MOF)的合成及多技术方法的全面表征,该框架涉及基于氧化还原活性四硫富瓦烯(TTF)的连接体四硫富瓦烯四羧酸盐(TTF-TC)。单晶X射线结构表明其化学式为[Dy(TTF-TC)(HO)]·21HO(1),呈现出复杂的二维拓扑结构,其中六核Dy簇作为二级结构单元(SBU),由五个连接体相互连接,在每层中几乎平行堆叠并沿[111]方向重叠,从而形成由水分子填充的一维通道。通过键长分析、拉曼显微镜和漫反射光谱证实了TTF单元的混合价态,并得到能带结构计算的进一步支持,能带结构计算还预测了该材料的活化电导率。由于有效的TTF堆叠和部分氧化,1表现出半导体行为,然而,与先前报道的基于TTF的MOF相比,其在室温下的电导率值达到了创纪录的1 mS cm。此外,温度和磁场依赖的交流(AC)磁化率测量表明磁场诱导了磁化的缓慢弛豫,这涉及两个独立的弛豫过程,其能垒(/)约为12 K,这对于羧酸镝配合物来说是典型的。本文报道的二维Dy-MOF为导电π-TTF堆叠和高度各向异性的Dy SMM特性的共存提供了一个有价值的总体方案。