Biolab, PoliTo(BIO)Med Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
SC Medicina Legale, ASL Città di Torino, Turin, Italy.
Sci Rep. 2023 Oct 18;13(1):17759. doi: 10.1038/s41598-023-44782-4.
Prion disease is a fatal neurodegenerative disorder characterized by accumulation of an abnormal prion protein (PrPSc) in the central nervous system. To identify PrPSc aggregates for diagnostic purposes, pathologists use immunohistochemical staining of prion protein antibodies on tissue samples. With digital pathology, artificial intelligence can now analyze stained slides. In this study, we developed an automated pipeline for the identification of PrPSc aggregates in tissue samples from the cerebellar and occipital cortex. To the best of our knowledge, this is the first framework to evaluate PrPSc deposition in digital images. We used two strategies: a deep learning segmentation approach using a vision transformer, and a machine learning classification approach with traditional classifiers. Our method was developed and tested on 64 whole slide images from 41 patients definitively diagnosed with prion disease. The results of our study demonstrated that our proposed framework can accurately classify WSIs from a blind test set. Moreover, it can quantify PrPSc distribution and localization throughout the brain. This could potentially be extended to evaluate protein expression in other neurodegenerative diseases like Alzheimer's and Parkinson's. Overall, our pipeline highlights the potential of AI-assisted pathology to provide valuable insights, leading to improved diagnostic accuracy and efficiency.
朊病毒病是一种致命的神经退行性疾病,其特征是中枢神经系统中异常朊病毒蛋白(PrPSc)的积累。为了出于诊断目的识别 PrPSc 聚集体,病理学家在组织样本上使用朊病毒蛋白抗体的免疫组织化学染色。借助数字病理学,人工智能现在可以分析染色载玻片。在这项研究中,我们开发了一种用于识别小脑和枕叶皮质组织样本中 PrPSc 聚集体的自动化管道。据我们所知,这是第一个评估数字图像中 PrPSc 沉积的框架。我们使用了两种策略:使用视觉转换器的深度学习分割方法,以及使用传统分类器的机器学习分类方法。我们的方法是在 41 名明确诊断为朊病毒病的患者的 64 张全幻灯片图像上开发和测试的。研究结果表明,我们提出的框架可以准确地对盲测试集中的 WSI 进行分类。此外,它还可以量化大脑中 PrPSc 的分布和定位。这可能会扩展到评估其他神经退行性疾病(如阿尔茨海默病和帕金森病)中的蛋白质表达。总体而言,我们的管道突出了人工智能辅助病理学提供有价值见解的潜力,从而提高诊断的准确性和效率。