Suppr超能文献

细胞通透性:一种逻辑回归方法,用于鉴定缺铁响应的根表皮调节因子。

Cellular clarity: a logistic regression approach to identify root epidermal regulators of iron deficiency response.

机构信息

Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, USA.

Department of Biosciences, Rice University, Houston, USA.

出版信息

BMC Genomics. 2023 Oct 18;24(1):620. doi: 10.1186/s12864-023-09714-6.

Abstract

BACKGROUND

Plants respond to stress through highly tuned regulatory networks. While prior works identified master regulators of iron deficiency responses in A. thaliana from whole-root data, identifying regulators that act at the cellular level is critical to a more comprehensive understanding of iron homeostasis. Within the root epidermis complex molecular mechanisms that facilitate iron reduction and uptake from the rhizosphere are known to be regulated by bHLH transcriptional regulators. However, many questions remain about the regulatory mechanisms that control these responses, and how they may integrate with developmental processes within the epidermis. Here, we use transcriptional profiling to gain insight into root epidermis-specific regulatory processes.

RESULTS

Set comparisons of differentially expressed genes (DEGs) between whole root and epidermis transcript measurements identified differences in magnitude and timing of organ-level vs. epidermis-specific responses. Utilizing a unique sampling method combined with a mutual information metric across time-lagged and non-time-lagged windows, we identified relationships between clusters of functionally relevant differentially expressed genes suggesting that developmental regulatory processes may act upstream of well-known Fe-specific responses. By integrating static data (DNA motif information) with time-series transcriptomic data and employing machine learning approaches, specifically logistic regression models with LASSO, we also identified putative motifs that served as crucial features for predicting differentially expressed genes. Twenty-eight transcription factors (TFs) known to bind to these motifs were not differentially expressed, indicating that these TFs may be regulated post-transcriptionally or post-translationally. Notably, many of these TFs also play a role in root development and general stress response.

CONCLUSIONS

This work uncovered key differences in -Fe response identified using whole root data vs. cell-specific root epidermal data. Machine learning approaches combined with additional static data identified putative regulators of -Fe response that would not have been identified solely through transcriptomic profiles and reveal how developmental and general stress responses within the epidermis may act upstream of more specialized -Fe responses for Fe uptake.

摘要

背景

植物通过高度调节的调控网络来应对胁迫。虽然之前的研究已经从整个根系数据中鉴定出拟南芥缺铁反应的主调控因子,但鉴定在细胞水平起作用的调控因子对于更全面地理解铁稳态至关重要。在根表皮中,众所周知,促进从根际还原和摄取铁的分子机制受到 bHLH 转录因子的调节。然而,关于控制这些反应的调控机制以及它们如何与表皮内的发育过程相整合的许多问题仍然存在。在这里,我们使用转录谱分析来深入了解根表皮特有的调控过程。

结果

对整个根系和表皮转录测量的差异表达基因(DEG)进行集合比较,确定了器官水平与表皮特异性反应在幅度和时间上的差异。利用独特的采样方法结合跨时间滞后和非时间滞后窗口的互信息度量,我们确定了功能相关差异表达基因聚类之间的关系,表明发育调控过程可能在上游作用于已知的 Fe 特异性反应。通过将静态数据(DNA 基序信息)与时间序列转录组数据相结合,并采用机器学习方法,特别是带有 LASSO 的逻辑回归模型,我们还鉴定了可能作为预测差异表达基因的关键特征的假定基序。已知结合这些基序的 28 个转录因子(TF)没有差异表达,这表明这些 TF 可能受到转录后或翻译后调控。值得注意的是,其中许多 TF 也在根发育和一般应激反应中发挥作用。

结论

这项工作揭示了使用整个根系数据与细胞特异性根表皮数据鉴定的缺铁反应之间的关键差异。机器学习方法与额外的静态数据相结合,鉴定了缺铁反应的潜在调控因子,这些因子仅通过转录组谱无法识别,并揭示了表皮内的发育和一般应激反应如何在上游作用于更专门的铁吸收铁反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/572e/10583470/bfcf38bdac06/12864_2023_9714_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验