Department of Public Health Sciences, The University of Chicago, 5841 South Maryland Ave MC2000, Chicago, 60637, IL, USA.
BMC Med Res Methodol. 2023 Oct 18;23(1):237. doi: 10.1186/s12874-023-02046-9.
Collection of intensive longitudinal health outcomes allows joint modeling of their mean (location) and variability (scale). Focusing on the location of the outcome, measures to detect influential subjects in longitudinal data using standard mixed-effects regression models (MRMs) have been widely discussed. However, no existing approach enables the detection of subjects that heavily influence the scale of the outcome.
We propose applying mixed-effects location scale (MELS) modeling combined with commonly used influence measures such as Cook's distance and DFBETAS to fill this gap. In this paper, we provide a framework for researchers to follow when trying to detect influential subjects for both the scale and location of the outcome. The framework allows detailed examination of each subject's influence on model fit as well as point estimates and precision of coefficients in different components of a MELS model.
We simulated two common scenarios in longitudinal healthcare studies and found that influence measures in our framework successfully capture influential subjects over 99% of the time. We also re-analyzed data from a health behavior study and found 4 particularly influential subjects, among which two cannot be detected by influence analyses via regular MRMs.
The proposed framework can help researchers detect influential subject(s) that will be otherwise overlooked by influential analysis using regular MRMs and analyze all data in one model despite influential subjects.
密集的纵向健康结果的收集允许对其均值(位置)和变异性(尺度)进行联合建模。关注结果的位置,已经广泛讨论了使用标准混合效应回归模型(MRM)检测纵向数据中具有影响力的个体的措施。然而,目前还没有一种方法可以检测到对结果尺度有重大影响的个体。
我们建议结合常用的影响度量方法(如 Cook 距离和 DFBETAS)应用混合效应位置尺度(MELS)建模来填补这一空白。在本文中,我们为研究人员提供了一个框架,用于尝试检测对结果的位置和尺度都有影响的个体。该框架允许对每个个体对模型拟合的影响以及 MELS 模型不同分量的系数的点估计和精度进行详细检查。
我们模拟了纵向医疗保健研究中的两种常见情况,发现我们框架中的影响度量在 99%以上的时间内成功地捕获了有影响力的个体。我们还重新分析了一项健康行为研究的数据,发现了 4 个特别有影响力的个体,其中 2 个不能通过常规 MRM 的影响分析检测到。
所提出的框架可以帮助研究人员检测到有影响力的个体,否则这些个体可能会被使用常规 MRM 的影响分析所忽略,并且可以在一个模型中分析所有数据,尽管存在有影响力的个体。