Suppr超能文献

线性混合效应模型中重复测量的诊断。

Diagnostics for repeated measurements in linear mixed effects models.

机构信息

Department of Mathematics and Statistics, California State Polytechnic University at Pomona, 3801 W. Temple ave., Pomona, CA 91768, USA.

出版信息

Stat Med. 2013 Apr 15;32(8):1361-75. doi: 10.1002/sim.5594. Epub 2012 Sep 11.

Abstract

Most currently available methods for detecting discordant subjects and observations in linear mixed effects model fits adapt existing methods for single-level regression data. The most common methods are generalizations of deletion-based approaches, primarily Cook's distance. This article describes the limitations of modifications to Cook's distance and local influence, and suggests a new nondeletion subject-level method, studentized residual sum of squares (TRSS) plots. We also suggest a new observation-level deletion method that detects discordant observations as an application of TRSS plots. The proposed method provides greater information on repeated measurements by utilizing revised residuals and efficiently evaluating the effect of discordant subjects and observations on the estimation of parameters including variance components. We compare the performance of the proposed methods with current methods by using the orthodontic growth data: a longitudinal dataset with 27 subjects each observed four times. TRSS plots successfully identified discordant subjects that were missed by modified Cook's distance methods and the local influence approach. Extensions of TRSS plots are also described.

摘要

目前大多数用于检测线性混合效应模型拟合中不一致的个体和观测值的方法都是基于单水平回归数据的现有方法的扩展。最常见的方法是基于删除的方法的扩展,主要是库克距离。本文描述了对库克距离和局部影响的修改的局限性,并提出了一种新的非删除个体水平的方法,学生化残差平方和(TRSS)图。我们还提出了一种新的观测值水平的删除方法,该方法将 TRSS 图应用于检测不一致的观测值。该方法通过利用修正后的残差和有效地评估不一致的个体和观测值对参数估计的影响(包括方差分量),为重复测量提供了更多信息。我们使用正畸生长数据(一个包含 27 名个体,每个个体观察 4 次的纵向数据集)来比较所提出的方法与现有方法的性能。TRSS 图成功地识别了修正后的 Cook 距离方法和局部影响方法遗漏的不一致个体。还描述了 TRSS 图的扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验