Suppr超能文献

重症监护试验中的适应性设计:一项模拟研究。

Adaptive designs in critical care trials: a simulation study.

机构信息

MRC Biostatistics Unit, East Forvie Building, University of Cambridge, Cambridge, CB2 0QY, UK.

MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, 90 High Holborn, 2nd Floor, London, WC1V 6LJ, UK.

出版信息

BMC Med Res Methodol. 2023 Oct 18;23(1):236. doi: 10.1186/s12874-023-02049-6.

Abstract

BACKGROUND

Adaptive clinical trials are growing in popularity as they are more flexible, efficient and ethical than traditional fixed designs. However, notwithstanding their increased use in assessing treatments for COVID-19, their use in critical care trials remains limited. A better understanding of the relative benefits of various adaptive designs may increase their use and interpretation.

METHODS

Using two large critical care trials (ADRENAL.

CLINICALTRIALS

gov number, NCT01448109. Updated 12-12-2017; NICE-SUGAR.

CLINICALTRIALS

gov number, NCT00220987. Updated 01-29-2009), we assessed the performance of three frequentist and two bayesian adaptive approaches. We retrospectively re-analysed the trials with one, two, four, and nine equally spaced interims. Using the original hypotheses, we conducted 10,000 simulations to derive error rates, probabilities of making an early correct and incorrect decision, expected sample size and treatment effect estimates under the null scenario (no treatment effect) and alternative scenario (a positive treatment effect). We used a logistic regression model with 90-day mortality as the outcome and the treatment arm as the covariate. The null hypothesis was tested using a two-sided significance level (α) at 0.05.

RESULTS

Across all approaches, increasing the number of interims led to a decreased expected sample size. Under the null scenario, group sequential approaches provided good control of the type-I error rate; however, the type I error rate inflation was an issue for the Bayesian approaches. The Bayesian Predictive Probability and O'Brien-Fleming approaches showed the highest probability of correctly stopping the trials (around 95%). Under the alternative scenario, the Bayesian approaches showed the highest overall probability of correctly stopping the ADRENAL trial for efficacy (around 91%), whereas the Haybittle-Peto approach achieved the greatest power for the NICE-SUGAR trial. Treatment effect estimates became increasingly underestimated as the number of interims increased.

CONCLUSIONS

This study confirms the right adaptive design can reach the same conclusion as a fixed design with a much-reduced sample size. The efficiency gain associated with an increased number of interims is highly relevant to late-phase critical care trials with large sample sizes and short follow-up times. Systematically exploring adaptive methods at the trial design stage will aid the choice of the most appropriate method.

摘要

背景

与传统固定设计相比,适应性临床试验更灵活、更高效、更符合伦理,因此越来越受欢迎。然而,尽管它们在评估 COVID-19 治疗方法方面的应用有所增加,但在重症监护试验中的应用仍然有限。更好地了解各种适应性设计的相对优势可能会增加它们的使用和解释。

方法

使用两项大型重症监护试验(ADRENAL.

CLINICALTRIALS

gov 编号,NCT01448109. 更新于 2017 年 12 月 12 日;NICE-SUGAR.

CLINICALTRIALS

gov 编号,NCT00220987. 更新于 2009 年 1 月 29 日),我们评估了三种频率主义和两种贝叶斯适应性方法的性能。我们使用一个、两个、四个和九个相等间隔的中间值,对试验进行了回顾性重新分析。使用原始假设,我们进行了 10000 次模拟,以在零假设(无治疗效果)和替代假设(阳性治疗效果)下得出错误率、正确和错误早期决策的概率、预期样本量和治疗效果估计。我们使用逻辑回归模型,以 90 天死亡率为结果,以治疗组为协变量。零假设使用双侧显著性水平(α)为 0.05 进行检验。

结果

在所有方法中,增加中间值的数量会导致预期样本量减少。在零假设情况下,分组序贯方法能很好地控制Ⅰ型错误率;然而,贝叶斯方法存在Ⅰ型错误率膨胀的问题。贝叶斯预测概率和 O'Brien-Fleming 方法显示出正确停止试验的最高概率(约 95%)。在替代假设情况下,贝叶斯方法在 ADRENAL 试验的疗效方面显示出正确停止试验的总体概率最高(约 91%),而 Haybittle-Peto 方法在 NICE-SUGAR 试验中显示出最大的功效。随着中间值数量的增加,治疗效果估计变得越来越低估。

结论

本研究证实,正确的适应性设计可以用大大减少的样本量得出与固定设计相同的结论。与具有大样本量和短随访时间的后期重症监护试验相关的增加中间值数量的效率增益非常重要。在试验设计阶段系统地探索适应性方法将有助于选择最合适的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07fd/10585789/215c21fa5689/12874_2023_2049_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验