Suppr超能文献

样本信息的期望价值指导群组序贯临床试验的设计。

Expected Value of Sample Information to Guide the Design of Group Sequential Clinical Trials.

机构信息

School of Health and Related Research, University of Sheffield, Sheffield, UK.

Department of Mathematics and Statistics, University of Reading, Reading, UK.

出版信息

Med Decis Making. 2022 May;42(4):461-473. doi: 10.1177/0272989X211045036. Epub 2021 Dec 3.

Abstract

INTRODUCTION

Adaptive designs allow changes to an ongoing trial based on prespecified early examinations of accrued data. Opportunities are potentially being missed to incorporate health economic considerations into the design of these studies.

METHODS

We describe how to estimate the expected value of sample information for group sequential design adaptive trials. We operationalize this approach in a hypothetical case study using data from a pilot trial. We report the expected value of sample information and expected net benefit of sampling results for 5 design options for the future full-scale trial including the fixed-sample-size design and the group sequential design using either the Pocock stopping rule or the O'Brien-Fleming stopping rule with 2 or 5 analyses. We considered 2 scenarios relating to 1) using the cost-effectiveness model with a traditional approach to the health economic analysis and 2) adjusting the cost-effectiveness analysis to incorporate the bias-adjusted maximum likelihood estimates of trial outcomes to account for the bias that can be generated in adaptive trials.

RESULTS

The case study demonstrated that the methods developed could be successfully applied in practice. The results showed that the O'Brien-Fleming stopping rule with 2 analyses was the most efficient design with the highest expected net benefit of sampling in the case study.

CONCLUSIONS

Cost-effectiveness considerations are unavoidable in budget-constrained, publicly funded health care systems, and adaptive designs can provide an alternative to costly fixed-sample-size designs. We recommend that when planning a clinical trial, expected value of sample information methods be used to compare possible adaptive and nonadaptive trial designs, with appropriate adjustment, to help justify the choice of design characteristics and ensure the cost-effective use of research funding.

HIGHLIGHTS

Opportunities are potentially being missed to incorporate health economic considerations into the design of adaptive clinical trials.Existing expected value of sample information analysis methods can be extended to compare possible group sequential and nonadaptive trial designs when planning a clinical trial.We recommend that adjusted analyses be presented to control for the potential impact of the adaptive designs and to maintain the accuracy of the calculations.This approach can help to justify the choice of design characteristics and ensure the cost-effective use of limited research funding.

摘要

介绍

自适应设计允许根据已累积数据的预先规定的早期检查来更改正在进行的试验。有可能错失机会,无法将健康经济考虑因素纳入这些研究的设计中。

方法

我们描述了如何估计群组序贯设计自适应试验的样本信息的预期值。我们使用来自试点试验的数据,在一个假设的案例研究中实施了这种方法。我们报告了未来全规模试验的 5 种设计方案的样本信息预期值和采样结果的预期净收益,包括固定样本量设计和使用 Pocock 停止规则或 O'Brien-Fleming 停止规则的群组序贯设计,具有 2 或 5 种分析。我们考虑了与 1)使用具有传统健康经济分析方法的成本效益模型和 2)调整成本效益分析以纳入试验结果的偏差调整最大似然估计有关的 2 种情况,以考虑自适应试验中可能产生的偏差。

结果

案例研究表明,可以成功地将开发的方法应用于实践。结果表明,在案例研究中,O'Brien-Fleming 停止规则与 2 次分析是最有效的设计,具有最高的采样预期净收益。

结论

在预算有限的公共资助医疗保健系统中,成本效益考虑是不可避免的,自适应设计可以为昂贵的固定样本量设计提供替代方案。我们建议在计划临床试验时,使用样本信息预期值方法来比较可能的自适应和非自适应试验设计,并进行适当的调整,以帮助证明设计特征的选择,并确保研究资金的成本效益。

重点

将健康经济考虑因素纳入自适应临床试验的设计中可能会错失机会。

现有的样本信息预期值分析方法可以在计划临床试验时扩展,以比较可能的群组序贯和非自适应试验设计。

我们建议进行调整分析,以控制自适应设计的潜在影响并保持计算的准确性。

这种方法可以帮助证明设计特征的选择,并确保有限研究资金的成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1826/9005835/825d2b361252/10.1177_0272989X211045036-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验