Suppr超能文献

通过非圆形CBCT轨道在存在金属髋关节假体的情况下显示骨盆结构。

Revealing pelvic structures in the presence of metal hip prothesis via non-circular CBCT orbits.

作者信息

Reynolds Tess, Ma Yiqun, Wang Tianyu, Mei Kai, Noël Peter B, Gang Grace J, Stayman J Webster

机构信息

The University of Sydney, Australia.

Johns Hopkins University, United States of America.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12466. doi: 10.1117/12.2652980. Epub 2023 Apr 3.

Abstract

As the expansion of Cone Beam CT (CBCT) to new interventional procedures continues, the burdensome challenge of metal artifacts remains. Photon starvation and beam hardening from metallic implants and surgical tools in the field of view can result in the anatomy of interest being partially or fully obscured by imaging artifacts. Leveraging the flexibility of modern robotic CBCT imaging systems, implementing non-circular orbits designed for reducing metal artifacts by ensuring data-completeness during acquisition has become a reality. Here, we investigate using non-circular orbits to reduce metal artifacts arising from metallic hip prostheses when imaging pelvic anatomy. As a first proof-of-concept, we implement a sinusoidal and a double-circle-arc orbit on a CBCT test bench, imaging a physical pelvis phantom, with two metal hip prostheses, housing a 3D-printed iodine-filled radial line-pair target. A standard circular orbit implemented with the CBCT test bench acted as comparator. Imaging data collection and processing, geometric calibration and image reconstruction was completed using in-house developed software programs. Imaging with the standard circular orbit, image artifacts were observed in the pelvic bones and only 33 out of the possible 45 line-pairs of the radial line-pair target were partially resolvable in the reconstructed images. Comparatively, imaging with both the sinusoid and double-circle-arc orbits reduced artifacts in the surrounding anatomy and enabled all 45 line-pairs to be visibly resolved in the reconstructed images. These results indicate the potential of non-circular orbits to assist in revealing previously obstructed structures in the pelvic region in the presence of metal hip prosthesis.

摘要

随着锥形束CT(CBCT)在新的介入程序中的应用不断扩展,金属伪影这一棘手的挑战依然存在。视野内金属植入物和手术工具造成的光子饥饿和束硬化,可能导致感兴趣的解剖结构被成像伪影部分或完全遮挡。利用现代机器人CBCT成像系统的灵活性,通过在采集过程中确保数据完整性来设计非圆形轨道以减少金属伪影已成为现实。在此,我们研究使用非圆形轨道来减少在对骨盆解剖结构成像时金属髋关节假体产生的金属伪影。作为首个概念验证,我们在CBCT试验台上实现了正弦轨道和双圆弧轨道,对带有两个金属髋关节假体的物理骨盆模型进行成像,该模型内置一个3D打印的充碘径向线对靶标。CBCT试验台实现的标准圆形轨道用作对照。使用内部开发的软件程序完成成像数据采集与处理、几何校准和图像重建。采用标准圆形轨道成像时,在骨盆骨中观察到图像伪影,重建图像中径向线对靶标45对线对中只有33对部分可分辨。相比之下,采用正弦轨道和双圆弧轨道成像均减少了周围解剖结构中的伪影,并使所有45对线对在重建图像中均可清晰分辨。这些结果表明,在存在金属髋关节假体的情况下,非圆形轨道有助于揭示骨盆区域先前被遮挡的结构。

相似文献

1
Revealing pelvic structures in the presence of metal hip prothesis via non-circular CBCT orbits.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12466. doi: 10.1117/12.2652980. Epub 2023 Apr 3.
2
C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
Phys Med Biol. 2020 Aug 19;65(16):165012. doi: 10.1088/1361-6560/ab9454.
3
Non-circular CBCT orbit design and realization on a clinical robotic C-arm for metal artifact reduction.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12034. doi: 10.1117/12.2612448. Epub 2022 Apr 4.
4
Cone-beam CT sampling incompleteness: analytical and empirical studies of emerging systems and source-detector orbits.
J Med Imaging (Bellingham). 2023 May;10(3):033503. doi: 10.1117/1.JMI.10.3.033503. Epub 2023 Jun 7.
5
Self-calibration of cone-beam CT geometry using 3D-2D image registration.
Phys Med Biol. 2016 Apr 7;61(7):2613-32. doi: 10.1088/0031-9155/61/7/2613. Epub 2016 Mar 10.
6
Spectral Orbits: Combining Spectral Imaging and Non-Circular Orbits for Interventional CBCT.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:190-193.
7
Cone-beam CT with a noncircular (sine-on-sphere) orbit: imaging performance of a clinical system for image-guided interventions.
J Med Imaging (Bellingham). 2024 Jul;11(4):043503. doi: 10.1117/1.JMI.11.4.043503. Epub 2024 Aug 22.
8
Universal orbit design for metal artifact elimination.
Phys Med Biol. 2022 May 23;67(11). doi: 10.1088/1361-6560/ac6aa0.
9
Cone-beam imaging with tilted rotation axis: Method and performance evaluation.
Med Phys. 2020 Aug;47(8):3305-3320. doi: 10.1002/mp.14209. Epub 2020 May 22.
10
3D-printed large-area focused grid for scatter reduction in cone-beam CT.
Med Phys. 2023 Jan;50(1):240-258. doi: 10.1002/mp.16005. Epub 2022 Oct 26.

引用本文的文献

2
Investigating 4D respiratory cone-beam CT imaging for thoracic interventions on robotic C-arm systems: a deformable phantom study.
Phys Eng Sci Med. 2024 Dec;47(4):1751-1762. doi: 10.1007/s13246-024-01491-0. Epub 2024 Oct 24.

本文引用的文献

2
Universal orbit design for metal artifact elimination.
Phys Med Biol. 2022 May 23;67(11). doi: 10.1088/1361-6560/ac6aa0.
3
Metal-Tolerant Noncircular Orbit Design and Implementation on Robotic C-Arm Systems.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2020 Aug;2020:400-403.
4
Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT.
Phys Med Biol. 2016 Oct 21;61(20):7263-7281. doi: 10.1088/0031-9155/61/20/7263. Epub 2016 Oct 3.
5
Self-calibration of cone-beam CT geometry using 3D-2D image registration.
Phys Med Biol. 2016 Apr 7;61(7):2613-32. doi: 10.1088/0031-9155/61/7/2613. Epub 2016 Mar 10.
6
Utility of cone-beam CT imaging in prostatic artery embolization.
J Vasc Interv Radiol. 2013 Nov;24(11):1603-7. doi: 10.1016/j.jvir.2013.06.024. Epub 2013 Aug 23.
7
Normalized metal artifact reduction (NMAR) in computed tomography.
Med Phys. 2010 Oct;37(10):5482-93. doi: 10.1118/1.3484090.
8
C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology.
J Vasc Interv Radiol. 2008 Jun;19(6):814-20. doi: 10.1016/j.jvir.2008.02.002. Epub 2008 Apr 23.
9
Ordered subsets algorithms for transmission tomography.
Phys Med Biol. 1999 Nov;44(11):2835-51. doi: 10.1088/0031-9155/44/11/311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验