Suppr超能文献

C 臂旋转角度规避金属伪影(MAA)在锥形束 CT 中的应用。

C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

Phys Med Biol. 2020 Aug 19;65(16):165012. doi: 10.1088/1361-6560/ab9454.

Abstract

Metal artifacts present a challenge to cone-beam CT (CBCT) image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy-often in the very region of interest pertinent to the imaging/surgical tasks. We present a method to reduce the influence of metal artifacts by prospectively defining an image acquisition protocol-viz., the C-arm source-detector orbit-that mitigates metal-induced biases in the projection data. The metal artifact avoidance (MAA) method is compatible with simple mobile C-arms, does not require exact prior information on the patient or metal implants, and is consistent with 3D filtered backprojection (FBP), more advanced (e.g. polyenergetic) model-based image reconstruction (MBIR), and metal artifact reduction (MAR) post-processing methods. The MAA method consists of: (i) coarse localization of metal objects in the field-of-view (FOV) via two or more low-dose scout projection views and segmentation (e.g. a simple U-Net) in coarse backprojection; (ii) model-based prediction of metal-induced x-ray spectral shift for all source-detector vertices accessible by the imaging system (e.g. gantry rotation and tilt angles); and (iii) identification of a circular or non-circular orbit that reduces the variation in spectral shift. The method was developed, tested, and evaluated in a series of studies presenting increasing levels of complexity and realism, including digital simulations, phantom experiment, and cadaver experiment in the context of image-guided spine surgery (pedicle screw implants). The MAA method accurately predicted tilted circular and non-circular orbits that reduced the magnitude of metal artifacts in CBCT reconstructions. Realistic distributions of metal instrumentation were successfully localized (0.71 median Dice coefficient) from 2-6 low-dose scout views even in complex anatomical scenes. The MAA-predicted tilted circular orbits reduced root-mean-square error (RMSE) in 3D image reconstructions by 46%-70% and 'blooming' artifacts (apparent width of the screw shaft) by 20-45%. Non-circular orbits defined by MAA achieved a further ∼46% reduction in RMSE compared to the best (tilted) circular orbit. The MAA method presents a practical means to predict C-arm orbits that minimize spectral bias from metal instrumentation. Resulting orbits-either simple tilted circular orbits or more complex non-circular orbits that can be executed with a motorized multi-axis C-arm-exhibited substantial reduction of metal artifacts in raw CBCT reconstructions by virtue of higher fidelity projection data, which are in turn compatible with subsequent MAR post-processing and/or polyenergetic MBIR to further reduce artifacts.

摘要

金属伪影对锥形束 CT(CBCT)图像引导手术构成挑战,使金属器械和相邻解剖结构的可视化变得困难,而这些结构通常正是与成像/手术任务相关的关键区域。我们提出了一种通过前瞻性定义图像采集协议(即 C 臂源-探测器轨道)来减少金属伪影影响的方法,该协议可以减轻投影数据中金属引起的偏差。金属伪影回避(MAA)方法与简单的移动 C 臂兼容,不需要患者或金属植入物的精确先验信息,并且与 3D 滤波反投影(FBP)、更先进的(例如多能)基于模型的图像重建(MBIR)和金属伪影减少(MAR)后处理方法一致。MAA 方法包括:(i)通过两个或更多低剂量的扫描投影视图和粗反投影中的分割(例如简单的 U-Net)粗略定位视野(FOV)中的金属物体;(ii)针对成像系统可访问的所有源-探测器顶点,预测金属引起的 X 射线光谱偏移的基于模型的方法(例如,龙门旋转和倾斜角度);(iii)确定一个圆形或非圆形轨道,以减少光谱偏移的变化。该方法在一系列呈现出越来越复杂和现实的研究中得到了开发、测试和评估,包括数字模拟、体模实验和在脊柱手术图像引导(椎弓根螺钉植入物)背景下的尸体实验。MAA 方法准确地预测了倾斜的圆形和非圆形轨道,减少了 CBCT 重建中金属伪影的幅度。即使在复杂的解剖场景中,也可以从 2-6 个低剂量的扫描视图中成功定位(0.71 中位数 Dice 系数)金属器械的逼真分布。MAA 预测的倾斜圆形轨道将 3D 图像重建中的均方根误差(RMSE)降低了 46%-70%,并将“blooming”伪影(螺钉轴的表观宽度)降低了 20-45%。与最佳(倾斜)圆形轨道相比,MAA 定义的非圆形轨道进一步将 RMSE 降低了约 46%。MAA 方法提供了一种实用的方法来预测 C 臂轨道,以最大限度地减少金属器械引起的光谱偏差。由此产生的轨道——无论是简单的倾斜圆形轨道还是更复杂的非圆形轨道,都可以通过电动多轴 C 臂来执行——由于投影数据的保真度更高,从而在原始 CBCT 重建中大大减少了金属伪影,这反过来又与后续的 MAR 后处理和/或多能 MBIR 兼容,以进一步减少伪影。

相似文献

1
C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
Phys Med Biol. 2020 Aug 19;65(16):165012. doi: 10.1088/1361-6560/ab9454.
2
A learning-based method for online adjustment of C-arm Cone-beam CT source trajectories for artifact avoidance.
Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1787-1796. doi: 10.1007/s11548-020-02249-1. Epub 2020 Aug 25.
3
Cone-beam imaging with tilted rotation axis: Method and performance evaluation.
Med Phys. 2020 Aug;47(8):3305-3320. doi: 10.1002/mp.14209. Epub 2020 May 22.
4
Known-component metal artifact reduction (KC-MAR) for cone-beam CT.
Phys Med Biol. 2019 Aug 21;64(16):165021. doi: 10.1088/1361-6560/ab3036.
5
Universal orbit design for metal artifact elimination.
Phys Med Biol. 2022 May 23;67(11). doi: 10.1088/1361-6560/ac6aa0.
6
Self-calibration of cone-beam CT geometry using 3D-2D image registration.
Phys Med Biol. 2016 Apr 7;61(7):2613-32. doi: 10.1088/0031-9155/61/7/2613. Epub 2016 Mar 10.
9
An interactive task-based method for the avoidance of metal artifacts in CBCT.
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1399-1407. doi: 10.1007/s11548-024-03103-4. Epub 2024 May 23.
10
Cone-beam CT sampling incompleteness: analytical and empirical studies of emerging systems and source-detector orbits.
J Med Imaging (Bellingham). 2023 May;10(3):033503. doi: 10.1117/1.JMI.10.3.033503. Epub 2023 Jun 7.

引用本文的文献

1
Parametric-MAA: fast, object-centric avoidance of metal artifacts for intraoperative CBCT.
Int J Comput Assist Radiol Surg. 2025 Apr 5. doi: 10.1007/s11548-025-03348-7.
3
Spectral Orbits: Combining Spectral Imaging and Non-Circular Orbits for Interventional CBCT.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:190-193.
4
Cone-beam CT with a noncircular (sine-on-sphere) orbit: imaging performance of a clinical system for image-guided interventions.
J Med Imaging (Bellingham). 2024 Jul;11(4):043503. doi: 10.1117/1.JMI.11.4.043503. Epub 2024 Aug 22.
5
Purse-string suture with nylon cords and metal clips for the treatment of duodenal fistulae under the endoscope: a case report.
Front Med (Lausanne). 2024 Jun 14;11:1403218. doi: 10.3389/fmed.2024.1403218. eCollection 2024.
8
Cone-beam CT sampling incompleteness: analytical and empirical studies of emerging systems and source-detector orbits.
J Med Imaging (Bellingham). 2023 May;10(3):033503. doi: 10.1117/1.JMI.10.3.033503. Epub 2023 Jun 7.
9
Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction.
Z Med Phys. 2024 Nov;34(4):565-579. doi: 10.1016/j.zemedi.2023.02.001. Epub 2023 Mar 25.
10
Computed Tomography: State-of-the-Art Advancements in Musculoskeletal Imaging.
Invest Radiol. 2023 Jan 1;58(1):99-110. doi: 10.1097/RLI.0000000000000908. Epub 2022 Aug 16.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
Non-circular CT orbit design for elimination of metal artifacts.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11312. doi: 10.1117/12.2550203. Epub 2020 Mar 16.
4
Known-component metal artifact reduction (KC-MAR) for cone-beam CT.
Phys Med Biol. 2019 Aug 21;64(16):165021. doi: 10.1088/1361-6560/ab3036.
5
Task-driven source-detector trajectories in cone-beam computed tomography: II. Application to neuroradiology.
J Med Imaging (Bellingham). 2019 Apr;6(2):025004. doi: 10.1117/1.JMI.6.2.025004. Epub 2019 May 9.
6
Task-driven source-detector trajectories in cone-beam computed tomography: I. Theory and methods.
J Med Imaging (Bellingham). 2019 Apr;6(2):025002. doi: 10.1117/1.JMI.6.2.025002. Epub 2019 May 2.
8
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
9
Image quality and dose for a multisource cone-beam CT extremity scanner.
Med Phys. 2018 Jan;45(1):144-155. doi: 10.1002/mp.12659. Epub 2017 Dec 1.
10
Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.
IEEE Trans Med Imaging. 2017 Dec;36(12):2424-2435. doi: 10.1109/TMI.2017.2763538. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验