Zhao Zhihao, Faghihroohi Shahrooz, Yang Junjie, Huang Kai, Navab Nassir, Maier Mathias, Nasseri M Ali
TUM School of Computation, Information and Technology , Technical University of Munich, Arcisstrasse 21, Munich, 80333, Germany.
Klinik und Poliklinik für Augenheilkunde, Technische Universität München, IsmaningerStr. 22, München, 81675, Germany.
Biomed Opt Express. 2023 Sep 26;14(10):5466-5483. doi: 10.1364/BOE.495438. eCollection 2023 Oct 1.
With the incremental popularity of ophthalmic imaging techniques, anonymization of the clinical image datasets is becoming a critical issue, especially the fundus images, which would have unique patient-specific biometric content. Towards achieving a framework to anonymize ophthalmic images, we propose an image-specific de-identification method on the vascular structure of retinal fundus images while preserving important clinical features such as hard exudates. Our method calculates the contribution of latent code in latent space to the vascular structure by computing the gradient map of the generated image with respect to latent space and then by computing the overlap between the vascular mask and the gradient map. The proposed method is designed to specifically target and effectively manipulate the latent code with the highest contribution score in vascular structures. Extensive experimental results show that our proposed method is competitive with other state-of-the-art approaches in terms of identity similarity and lesion similarity, respectively. Additionally, our approach allows for a better balance between identity similarity and lesion similarity, thus ensuring optimal performance in a trade-off manner.
随着眼科成像技术的日益普及,临床图像数据集的匿名化正成为一个关键问题,尤其是眼底图像,其包含独特的患者特定生物特征内容。为了实现一个对眼科图像进行匿名化的框架,我们提出了一种针对视网膜眼底图像血管结构的特定图像去识别方法,同时保留硬性渗出等重要临床特征。我们的方法通过计算生成图像相对于潜在空间的梯度图,然后计算血管掩码与梯度图之间的重叠,来计算潜在空间中潜在代码对血管结构的贡献。所提出的方法旨在专门针对并有效操纵血管结构中贡献得分最高的潜在代码。大量实验结果表明,我们提出的方法在身份相似度和病变相似度方面分别与其他现有先进方法具有竞争力。此外,我们的方法能够在身份相似度和病变相似度之间实现更好的平衡,从而以权衡的方式确保最佳性能。