Suppr超能文献

使用潜在空间解缠对眼底图像进行非侵入式生物特征数据去识别。

Unobtrusive biometric data de-identification of fundus images using latent space disentanglement.

作者信息

Zhao Zhihao, Faghihroohi Shahrooz, Yang Junjie, Huang Kai, Navab Nassir, Maier Mathias, Nasseri M Ali

机构信息

TUM School of Computation, Information and Technology , Technical University of Munich, Arcisstrasse 21, Munich, 80333, Germany.

Klinik und Poliklinik für Augenheilkunde, Technische Universität München, IsmaningerStr. 22, München, 81675, Germany.

出版信息

Biomed Opt Express. 2023 Sep 26;14(10):5466-5483. doi: 10.1364/BOE.495438. eCollection 2023 Oct 1.

Abstract

With the incremental popularity of ophthalmic imaging techniques, anonymization of the clinical image datasets is becoming a critical issue, especially the fundus images, which would have unique patient-specific biometric content. Towards achieving a framework to anonymize ophthalmic images, we propose an image-specific de-identification method on the vascular structure of retinal fundus images while preserving important clinical features such as hard exudates. Our method calculates the contribution of latent code in latent space to the vascular structure by computing the gradient map of the generated image with respect to latent space and then by computing the overlap between the vascular mask and the gradient map. The proposed method is designed to specifically target and effectively manipulate the latent code with the highest contribution score in vascular structures. Extensive experimental results show that our proposed method is competitive with other state-of-the-art approaches in terms of identity similarity and lesion similarity, respectively. Additionally, our approach allows for a better balance between identity similarity and lesion similarity, thus ensuring optimal performance in a trade-off manner.

摘要

随着眼科成像技术的日益普及,临床图像数据集的匿名化正成为一个关键问题,尤其是眼底图像,其包含独特的患者特定生物特征内容。为了实现一个对眼科图像进行匿名化的框架,我们提出了一种针对视网膜眼底图像血管结构的特定图像去识别方法,同时保留硬性渗出等重要临床特征。我们的方法通过计算生成图像相对于潜在空间的梯度图,然后计算血管掩码与梯度图之间的重叠,来计算潜在空间中潜在代码对血管结构的贡献。所提出的方法旨在专门针对并有效操纵血管结构中贡献得分最高的潜在代码。大量实验结果表明,我们提出的方法在身份相似度和病变相似度方面分别与其他现有先进方法具有竞争力。此外,我们的方法能够在身份相似度和病变相似度之间实现更好的平衡,从而以权衡的方式确保最佳性能。

相似文献

1
Unobtrusive biometric data de-identification of fundus images using latent space disentanglement.
Biomed Opt Express. 2023 Sep 26;14(10):5466-5483. doi: 10.1364/BOE.495438. eCollection 2023 Oct 1.
2
Anonymizing medical case-based explanations through disentanglement.
Med Image Anal. 2024 Jul;95:103209. doi: 10.1016/j.media.2024.103209. Epub 2024 May 17.
4
Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation.
Comput Methods Programs Biomed. 2023 Feb;229:107306. doi: 10.1016/j.cmpb.2022.107306. Epub 2022 Dec 14.
5
Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications.
Comput Methods Programs Biomed. 2016 Oct;135:61-75. doi: 10.1016/j.cmpb.2016.07.011. Epub 2016 Jul 16.
6
-SALSA: -anonymous synthetic averaging of retinal images via local style alignment.
Comput Vis ECCV. 2022 Oct;13681:661-678. doi: 10.1007/978-3-031-19803-8_39. Epub 2022 Oct 23.
7
Image Quality Assessment Guided Collaborative Learning of Image Enhancement and Classification for Diabetic Retinopathy Grading.
IEEE J Biomed Health Inform. 2023 Mar;27(3):1455-1466. doi: 10.1109/JBHI.2022.3231276. Epub 2023 Mar 7.
8
Orthogonal Subspace Representation for Generative Adversarial Networks.
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4413-4427. doi: 10.1109/TNNLS.2024.3377436. Epub 2025 Feb 28.
9
Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.
Artif Intell Med. 2021 Aug;118:102116. doi: 10.1016/j.artmed.2021.102116. Epub 2021 May 29.
10
Conditional generation of medical images via disentangled adversarial inference.
Med Image Anal. 2021 Aug;72:102106. doi: 10.1016/j.media.2021.102106. Epub 2021 May 24.

引用本文的文献

1
AI-based fully automatic analysis of retinal vascular morphology in pediatric high myopia.
BMC Ophthalmol. 2024 Sep 27;24(1):415. doi: 10.1186/s12886-024-03682-5.

本文引用的文献

1
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
Ophthalmol Sci. 2021 Nov 16;1(4):100079. doi: 10.1016/j.xops.2021.100079. eCollection 2021 Dec.
2
TMJOAI: An Artificial Web-Based Intelligence Tool for Early Diagnosis of the Temporomandibular Joint Osteoarthritis.
Clin Image Based Proced Distrib Collab Learn Artif Intell Combat COVID 19 Secur Priv Preserv Mach Learn (2021). 2021 Sep-Oct;12969:78-87. doi: 10.1007/978-3-030-90874-4_8. Epub 2021 Nov 14.
3
Federated learning and differential privacy for medical image analysis.
Sci Rep. 2022 Feb 4;12(1):1953. doi: 10.1038/s41598-022-05539-7.
4
Applications of deep learning in fundus images: A review.
Med Image Anal. 2021 Apr;69:101971. doi: 10.1016/j.media.2021.101971. Epub 2021 Jan 20.
5
InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs.
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):2004-2018. doi: 10.1109/TPAMI.2020.3034267. Epub 2022 Mar 4.
6
Protecting Data Privacy in the Age of AI-Enabled Ophthalmology.
Transl Vis Sci Technol. 2020 Jul 6;9(2):36. doi: 10.1167/tvst.9.2.36. eCollection 2020 Jul.
7
Patient privacy, photographs, and publication.
JAMA Facial Plast Surg. 2013 Sep-Oct;15(5):335-6. doi: 10.1001/jamafacial.2013.1411.
8
Photography consent and related legal issues.
Facial Plast Surg Clin North Am. 2010 May;18(2):237-44, Table of Contents. doi: 10.1016/j.fsc.2010.01.003.
9
SIFT: Predicting amino acid changes that affect protein function.
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4. doi: 10.1093/nar/gkg509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验