Suppr超能文献

基于人工智能的小儿高度近视视网膜血管形态全自动分析。

AI-based fully automatic analysis of retinal vascular morphology in pediatric high myopia.

机构信息

Klinik und Poliklinik für Augenheilkunde, Ophthalmology Department of Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.

Faculty of Information Technology, Technische Universität München, Munich, Germany.

出版信息

BMC Ophthalmol. 2024 Sep 27;24(1):415. doi: 10.1186/s12886-024-03682-5.

Abstract

PURPOSE

To investigate the changes in retinal vascular structures associated with various stages of myopia by designing automated software based on an artificial intelligence model.

METHODS

The study involved 1324 pediatric participants from the National Children's Medical Center in China, and 2366 high-quality retinal images and corresponding refractive parameters were obtained and analyzed. Spherical equivalent refraction (SER) degree was calculated. We proposed a data analysis model based on a combination of the Convolutional Neural Networks (CNN) model and the attention module to classify images, segment vascular structures, and measure vascular parameters, such as main angle (MA), branching angle (BA), bifurcation edge angle (BEA) and bifurcation edge coefficient (BEC). One-way ANOVA compared parameter measurements between the normal fundus, low myopia, moderate myopia, and high myopia groups.

RESULTS

The mean age was 9.85 ± 2.60 years, with an average SER of -1.49 ± 3.16D in the right eye and - 1.48 ± 3.13D in the left eye. There were 279 (12.38%) images in the normal group and 384 (16.23%) images in the high myopia group. Compared with normal fundus, the MA of fundus vessels in different myopic refractive groups was significantly reduced (P = 0.006, P = 0.004, P = 0.019, respectively), and the performance of the venous system was particularly obvious (P < 0.001). At the same time, the BEC decreased disproportionately (P < 0.001). Further analysis of fundus vascular parameters at different degrees of myopia showed that there were also significant differences in BA and branching coefficient (BC). The arterial BA value of the fundus vessel in the high myopia group was lower than that of other groups (P = 0.032, 95% confidence interval [CI], 0.22-4.86), while the venous BA values increased (P = 0.026). The BEC values of high myopia were higher than those of low and moderate myopia groups. When the loss function of our data classification model converged to 0.09, the model accuracy reached 94.19%.

CONCLUSION

The progression of myopia is associated with a series of quantitative retinal vascular parameters, particularly the vascular angles. As the degree of myopia increases, the diversity of vascular characteristics represented by these parameters also increases.

摘要

目的

通过设计基于人工智能模型的自动化软件,研究与近视各阶段相关的视网膜血管结构变化。

方法

本研究纳入了来自中国国家儿童医学中心的 1324 名儿科参与者,获得并分析了 2366 张高质量的视网膜图像和相应的屈光参数。计算球镜等效屈光度(SER)度。我们提出了一种数据分析模型,该模型结合了卷积神经网络(CNN)模型和注意力模块,用于对图像进行分类、分割血管结构和测量血管参数,如主角(MA)、分支角(BA)、分叉边缘角(BEA)和分叉边缘系数(BEC)。单因素方差分析比较了正常眼底、低度近视、中度近视和高度近视组之间的参数测量值。

结果

右眼平均年龄为 9.85±2.60 岁,平均 SER 为-1.49±3.16D;左眼平均年龄为 9.85±2.60 岁,平均 SER 为-1.48±3.13D。正常组有 279 张(12.38%)图像,高度近视组有 384 张(16.23%)图像。与正常眼底相比,不同近视屈光组眼底血管的 MA 明显降低(P=0.006、P=0.004、P=0.019),静脉系统的表现尤为明显(P<0.001)。同时,BEC 不成比例地降低(P<0.001)。进一步分析不同程度近视的眼底血管参数,发现 BA 和分支系数(BC)也有显著差异。高度近视组眼底血管的动脉 BA 值低于其他组(P=0.032,95%置信区间[CI],0.22-4.86),而静脉 BA 值升高(P=0.026)。高度近视组的 BEC 值高于低、中度近视组。当我们的数据分类模型的损失函数收敛到 0.09 时,模型的准确率达到了 94.19%。

结论

近视的进展与一系列定量的视网膜血管参数有关,特别是血管角度。随着近视程度的增加,这些参数所代表的血管特征的多样性也增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/11437631/0a9e3741d993/12886_2024_3682_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验