Suppr超能文献

新型冠状病毒变异株疫苗的从头设计

De novo design of anti-variant COVID-19 vaccine.

作者信息

Goswami Arpita, Kumar Madan, Ullah Samee, Gore Milind M

机构信息

Kshamalab, Leo's Research Services and Suppliers, Mysuru 570016, India.

Department of Chemistry-BMC Biochemistry, University of Uppsala, Uppsala 75237, Sweden.

出版信息

Biol Methods Protoc. 2023 Sep 26;8(1):bpad021. doi: 10.1093/biomethods/bpad021. eCollection 2023.

Abstract

Recent studies highlight the effectiveness of hybrid Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) vaccines combining wild-type nucleocapsid and Spike proteins. We have further enhanced this strategy by incorporating delta and omicron variants' spike protein mutations. Both delta and omicron mark the shifts in viral transmissibility and severity in unvaccinated and vaccinated patients. So their mutations are highly crucial for future viral variants also. Omicron is particularly adept at immune evasion by mutating spike epitopes. The rapid adaptations of Omicron and sub-variants to spike-based vaccines and simultaneous transmissibility underline the urgency for new vaccines in the continuous battle against SARS-CoV-2. Therefore, we have added three persistent T-cell-stimulating nucleocapsid peptides similar to homologous sequences from seasonal Human Coronaviruses (HuCoV) and an envelope peptide that elicits a strong T-cell immune response. These peptides are clustered in the hybrid spike's cytoplasmic region with non-immunogenic linkers, enabling systematic arrangement. AlphaFold (Artificial intelligence-based model building) analysis suggests omitting the transmembrane domain enhances these cytoplasmic epitopes' folding efficiency which can ensure persistent immunity for CD4 structural epitopes. Further molecular dynamics simulations validate the compact conformation of the modeled structures and a flexible C-terminus region. Overall, the structures show stability and less conformational fluctuation throughout the simulation. Also, the AlphaFold predicted structural epitopes maintained their folds during simulation to ensure the specificity of CD4 T-cell response after vaccination. Our proposed approach may provide options for incorporating diverse anti-viral T-cell peptides, similar to HuCoV, into linker regions. This versatility can be promising to address outbreaks and challenges posed by various viruses for effective management in this era of innovative vaccines.

摘要

近期研究凸显了将野生型核衣壳蛋白和刺突蛋白相结合的新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫苗的有效性。我们通过纳入德尔塔和奥密克戎变异株的刺突蛋白突变进一步优化了这一策略。德尔塔和奥密克戎变异株均标志着未接种疫苗和接种疫苗患者中病毒传播性和严重性的变化。因此,它们的突变对于未来的病毒变异株也至关重要。奥密克戎变异株尤其擅长通过刺突表位突变实现免疫逃逸。奥密克戎变异株及其亚变体对基于刺突蛋白的疫苗的快速适应性以及同时具备的传播性凸显了在与SARS-CoV-2的持续斗争中研发新型疫苗的紧迫性。因此,我们添加了三种持续刺激T细胞的核衣壳肽,它们类似于季节性人类冠状病毒(HuCoV)的同源序列,以及一种能引发强烈T细胞免疫反应的包膜肽。这些肽通过非免疫原性接头聚集在杂合刺突的细胞质区域,从而实现系统排列。AlphaFold(基于人工智能的模型构建)分析表明,省略跨膜结构域可提高这些细胞质表位的折叠效率,从而确保CD4结构表位的持久免疫。进一步的分子动力学模拟验证了建模结构的紧凑构象以及灵活的C末端区域。总体而言,这些结构在整个模拟过程中显示出稳定性且构象波动较小。此外,AlphaFold预测的结构表位在模拟过程中保持其折叠状态,以确保接种疫苗后CD4 T细胞反应的特异性。我们提出的方法可能为将类似于HuCoV的多种抗病毒T细胞肽纳入接头区域提供选择。这种多功能性有望应对各种病毒引发的疫情和挑战,以便在这个创新疫苗时代进行有效管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f165/10580973/c8f270622d51/bpad021f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验