Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
J Mol Endocrinol. 2023 Oct 18;71(4). doi: 10.1530/JME-23-0070. Print 2023 Nov 1.
In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.
在内质网(ER)腔中,葡萄糖-6-磷酸酶催化亚基 1 和 2(G6PC1;G6PC2)将葡萄糖-6-磷酸(G6P)水解为葡萄糖和无机磷酸,而己糖-6-磷酸脱氢酶(H6PD)则将 G6P 水解为 6-磷酸葡萄糖酸(6PG),该反应产生 NADPH。11β-羟甾体脱氢酶 1 型(HSD11B1)利用这种 NADPH 将无活性的可的松转化为皮质醇。HSD11B1 抑制剂可改善胰岛素敏感性,而 G6PC 抑制剂预计可降低空腹血糖(FBG)。本研究旨在探讨 G6PC1 和 G6PC2 是否影响 H6PD 的 G6P 流量,反之亦然。我们使用一种新的转录测定法,该方法利用单独的融合基因来定量糖皮质激素和葡萄糖信号,结果表明,胰岛衍生的 832/13 细胞系中 H6PD 和 HSD11B1 的过表达激活了糖皮质激素刺激的融合基因表达。HSD11B1 的过表达独立于 G6P 流量的改变而减弱了葡萄糖刺激的融合基因表达。虽然 G6PC1 和 G6PC2 的过表达减弱了葡萄糖刺激的融合基因表达,但对糖皮质激素刺激的融合基因表达的影响很小。在肝源性 HepG2 细胞系中,H6PD 和 HSD11B1 的过表达激活了糖皮质激素刺激的融合基因表达,但 G6PC1 和 G6PC2 的过表达没有影响。在啮齿动物中,HSD11B1 将 11-脱氢皮质酮(11-DHC)转化为皮质酮。用 11-DHC 处理 5 周的野生型和 G6pc2 敲除小鼠的研究表明,代谢变化不受 G6PC2 缺失的影响。这些数据表明,HSD11B1 的活性不受 G6PC1 或 G6PC2 的存在或缺失的显著影响。因此,G6PC1 和 G6PC2 抑制剂预计通过降低 FBG 而不会导致糖皮质激素信号的有害增加而产生有益的效果。