Suppr超能文献

一种 G6PC2 抑制剂的生化和代谢特征。

Biochemical and metabolic characterization of a G6PC2 inhibitor.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.

Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN, 37232, USA.

出版信息

Biochimie. 2024 Jul;222:109-122. doi: 10.1016/j.biochi.2024.02.012. Epub 2024 Mar 1.

Abstract

Three glucose-6-phosphatase catalytic subunits, that hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate, have been identified, designated G6PC1-3, but only G6PC1 and G6PC2 have been implicated in the regulation of fasting blood glucose (FBG). Elevated FBG has been associated with multiple adverse clinical outcomes, including increased risk for type 2 diabetes and various cancers. Therefore, G6PC1 and G6PC2 inhibitors that lower FBG may be of prophylactic value for the prevention of multiple conditions. The studies described here characterize a G6PC2 inhibitor, designated VU0945627, previously identified as Compound 3. We show that VU0945627 preferentially inhibits human G6PC2 versus human G6PC1 but activates human G6PC3. VU0945627 is a mixed G6PC2 inhibitor, increasing the Km but reducing the Vmax for G6P hydrolysis. PyRx virtual docking to an AlphaFold2-derived G6PC2 structural model suggests VU0945627 binds two sites in human G6PC2. Mutation of residues in these sites reduces the inhibitory effect of VU0945627. VU0945627 does not inhibit mouse G6PC2 despite its 84% sequence identity with human G6PC2. Mutagenesis studies suggest this lack of inhibition of mouse G6PC2 is due, in part, to a change in residue 318 from histidine in human G6PC2 to proline in mouse G6PC2. Surprisingly, VU0945627 still inhibited glucose cycling in the mouse islet-derived βTC-3 cell line. Studies using intact mouse liver microsomes and PyRx docking suggest that this observation can be explained by an ability of VU0945627 to also inhibit the G6P transporter SLC37A4. These data will inform future computational modeling studies designed to identify G6PC isoform-specific inhibitors.

摘要

已鉴定出三种葡萄糖-6-磷酸酶催化亚基,它们将葡萄糖-6-磷酸(G6P)水解为葡萄糖和无机磷酸,分别命名为 G6PC1-3,但只有 G6PC1 和 G6PC2 与空腹血糖(FBG)的调节有关。升高的 FBG 与多种不良临床结局相关,包括患 2 型糖尿病和各种癌症的风险增加。因此,降低 FBG 的 G6PC1 和 G6PC2 抑制剂可能对预防多种疾病具有预防价值。这里描述的研究表征了一种 G6PC2 抑制剂,命名为 VU0945627,先前被鉴定为化合物 3。我们表明,VU0945627 优先抑制人 G6PC2 而不是人 G6PC1,但激活人 G6PC3。VU0945627 是一种混合 G6PC2 抑制剂,增加 Km 但降低 G6P 水解的 Vmax。PyRx 虚拟对接至 AlphaFold2 衍生的 G6PC2 结构模型表明,VU0945627 结合人 G6PC2 中的两个位点。这些位点的残基突变会降低 VU0945627 的抑制作用。尽管 VU0945627 与人 G6PC2 的序列同一性为 84%,但它不抑制鼠 G6PC2。诱变研究表明,鼠 G6PC2 缺乏抑制作用部分归因于人 G6PC2 中的 318 位残基从组氨酸突变为鼠 G6PC2 中的脯氨酸。令人惊讶的是,VU0945627 仍抑制来自βTC-3 胰岛衍生细胞系的小鼠胰岛的葡萄糖循环。使用完整的小鼠肝微粒体和 PyRx 对接的研究表明,这一观察结果可以通过 VU0945627 抑制 G6P 转运体 SLC37A4 的能力来解释。这些数据将为旨在鉴定 G6PC 同工型特异性抑制剂的未来计算建模研究提供信息。

相似文献

1
Biochemical and metabolic characterization of a G6PC2 inhibitor.
Biochimie. 2024 Jul;222:109-122. doi: 10.1016/j.biochi.2024.02.012. Epub 2024 Mar 1.
3
G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance.
Endocrinology. 2016 Nov;157(11):4133-4145. doi: 10.1210/en.2016-1678. Epub 2016 Sep 21.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
Single-incision sling operations for urinary incontinence in women.
Cochrane Database Syst Rev. 2017 Jul 26;7(7):CD008709. doi: 10.1002/14651858.CD008709.pub3.
7
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
8
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001911. doi: 10.1002/14651858.CD001911.pub3.
9
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
10
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.

本文引用的文献

1
Integrative analysis of pathogenic variants in glucose-6-phosphatase based on an AlphaFold2 model.
PNAS Nexus. 2024 Jan 29;3(2):pgae036. doi: 10.1093/pnasnexus/pgae036. eCollection 2024 Feb.
3
Fasting blood glucose and risk of incident pancreatic cancer.
PLoS One. 2022 Oct 27;17(10):e0274195. doi: 10.1371/journal.pone.0274195. eCollection 2022.
4
Glucose-6-phosphatase catalytic subunit 2 negatively regulates glucose oxidation and insulin secretion in pancreatic β-cells.
J Biol Chem. 2022 Apr;298(4):101729. doi: 10.1016/j.jbc.2022.101729. Epub 2022 Feb 15.
6
Biophysical and functional properties of purified glucose-6-phosphatase catalytic subunit 1.
J Biol Chem. 2022 Jan;298(1):101520. doi: 10.1016/j.jbc.2021.101520. Epub 2021 Dec 21.
7
Fasting Plasma Glucose and Incident Colorectal Cancer: Analysis of a Nationwide Epidemiological Database.
J Clin Endocrinol Metab. 2021 Oct 21;106(11):e4448-e4458. doi: 10.1210/clinem/dgab466.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9
Association of fasting glucose with lifetime risk of incident heart failure: the Lifetime Risk Pooling Project.
Cardiovasc Diabetol. 2021 Mar 22;20(1):66. doi: 10.1186/s12933-021-01265-y.
10
Fasting Blood Glucose, Cholesterol, and Risk of Primary Liver Cancer: The Kailuan Study.
Cancer Res Treat. 2021 Oct;53(4):1113-1122. doi: 10.4143/crt.2020.817. Epub 2021 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验