Guo Xiaofan, Qiu Wei, Li Boyan, Qi Yanhua, Wang Shaobo, Zhao Rongrong, Cheng Bo, Han Xiao, Du Hao, Pan Ziwen, Zhao Shulin, Qiu Jiawei, Li Gang, Xue Hao
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China.
Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
Clin Cancer Res. 2024 Mar 15;30(6):1160-1174. doi: 10.1158/1078-0432.CCR-23-0430.
Neuronal activity in the brain has been reported to promote the malignant progression of glioma cells via nonsynaptic paracrine and electrical synaptic integration mechanisms. However, the interaction between neuronal activity and the immune microenvironment in glioblastoma (GBM) remains largely unclear.
By applying chemogenetic techniques, we enhanced and inhibited neuronal activity in vitro and in a mouse model to study how neuronal activity regulates microglial polarization and affects GBM progression.
We demonstrate that hypoxia drove glioma stem cells (GSC) to produce higher levels of glutamate, which activated local neurons. Neuronal activity promoted GBM progression by facilitating microglial M2 polarization through enriching miR-200c-3p in neuron-derived exosomes, which decreased the expression of the m6A writer zinc finger CCCH-type containing 13 (ZC3H13) in microglia, impairing methylation of dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of DUSP9 promoted ERK pathway activation, which subsequently induced microglial M2 polarization. In the mouse model, cortical neuronal activation promoted microglial M2 polarization whereas cortical neuronal inhibition decreased microglial M2 polarization in GBM xenografts. miR-200c-3p knockdown in cortical neurons impaired microglial M2 polarization and GBM xenograft growth, even when cortical neurons were activated. Treatment with the anti-seizure medication levetiracetam impaired neuronal activation and subsequently reduced neuron-mediated microglial M2 polarization.
These findings indicated that hypoxic GSC-induced neuron activation promotes GBM progression by polarizing microglia via the exosomal miR-200c-3p/ZC3H13/DUSP9/p-ERK pathway. Levetiracetam, an antiepileptic drug, blocks the abnormal activation of neurons in GBM and impairs activity-dependent GBM progression. See related commentary by Cui et al., p. 1073.
据报道,大脑中的神经元活动可通过非突触旁分泌和电突触整合机制促进胶质瘤细胞的恶性进展。然而,胶质母细胞瘤(GBM)中神经元活动与免疫微环境之间的相互作用仍 largely 不清楚。
通过应用化学遗传学技术,我们在体外和小鼠模型中增强和抑制神经元活动,以研究神经元活动如何调节小胶质细胞极化并影响 GBM 进展。
我们证明缺氧驱使胶质瘤干细胞(GSC)产生更高水平的谷氨酸,从而激活局部神经元。神经元活动通过在神经元衍生的外泌体中富集 miR-200c-3p 促进小胶质细胞 M2 极化,从而降低小胶质细胞中 m6A 书写蛋白锌指 CCCH 型包含 13(ZC3H13)的表达,损害双特异性磷酸酶 9(DUSP9)mRNA 的甲基化。DUSP9 的下调促进 ERK 途径激活,随后诱导小胶质细胞 M2 极化。在小鼠模型中,皮质神经元激活促进小胶质细胞 M2 极化,而皮质神经元抑制则降低 GBM 异种移植中小胶质细胞 M2 极化。即使皮质神经元被激活,皮质神经元中 miR-200c-3p 的敲低也会损害小胶质细胞 M2 极化和 GBM 异种移植生长。抗癫痫药物左乙拉西坦治疗会损害神经元激活,随后减少神经元介导的小胶质细胞 M2 极化。
这些发现表明,缺氧 GSC 诱导的神经元激活通过外泌体 miR-200c-3p/ZC3H13/DUSP9/p-ERK 途径使小胶质细胞极化,从而促进 GBM 进展。抗癫痫药物左乙拉西坦可阻断 GBM 中神经元的异常激活,并损害依赖活动的 GBM 进展。见 Cui 等人的相关评论,第 1073 页。