Suppr超能文献

大规模二维半导体范德华异质结构中的带隙景观工程

Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures.

作者信息

Zatko Victor, Dubois Simon Mutien-Marie, Godel Florian, Carrétéro Cécile, Sander Anke, Collin Sophie, Galbiati Marta, Peiro Julian, Panciera Federico, Patriarche Gilles, Brus Pierre, Servet Bernard, Charlier Jean-Christophe, Martin Marie-Blandine, Dlubak Bruno, Seneor Pierre

机构信息

Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.

Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

出版信息

ACS Nano. 2021 Apr 27;15(4):7279-7289. doi: 10.1021/acsnano.1c00544. Epub 2021 Mar 23.

Abstract

We present a growth process relying on pulsed laser deposition for the elaboration of complex van der Waals heterostructures on large scales, at a 400 °C CMOS-compatible temperature. Illustratively, we define a multilayer quantum well geometry through successive growths, leading to WSe being encapsulated into WS layers. The structural constitution of the quantum well geometry is confirmed by Raman spectroscopy combined with transmission electron microscopy. The large-scale high homogeneity of the resulting 2D van der Waals heterostructure is also validated by macro- and microscale Raman mappings. We illustrate the benefit of this integrative approach by showing the structural preservation of even the most fragile 2D layers once encapsulated in a van der Waals heterostructure. Finally, we fabricate a vertical tunneling device based on these large-scale layers and discuss the clear signature of electronic transport controlled by the quantum well configuration with calculations in support. The flexibility of this direct growth approach, with multilayer stacks being built in a single run, allows for the definition of complex 2D heterostructures barely accessible with usual exfoliation or transfer techniques of 2D materials. Reminiscent of the III-V semiconductors' successful exploitation, our approach unlocks virtually infinite combinations of large 2D material families in any complex van der Waals heterostructure design.

摘要

我们展示了一种生长工艺,该工艺依靠脉冲激光沉积,在400°C的CMOS兼容温度下大规模制备复杂的范德华异质结构。举例来说,我们通过连续生长定义了一种多层量子阱结构,使得WSe被包裹在WS层中。通过拉曼光谱结合透射电子显微镜对量子阱结构的组成进行了确认。所得二维范德华异质结构的大规模高均匀性也通过宏观和微观尺度的拉曼映射得到了验证。我们通过展示即使是最脆弱的二维层一旦被包裹在范德华异质结构中也能保持结构完整性,来说明这种综合方法的优势。最后,我们基于这些大规模层制造了一个垂直隧穿器件,并通过计算支持讨论了由量子阱配置控制的电子输运的清晰特征。这种直接生长方法的灵活性在于可以在一次运行中构建多层堆叠,从而能够定义出用常规二维材料剥离或转移技术几乎无法实现的复杂二维异质结构。类似于III-V族半导体的成功应用,我们的方法在任何复杂的范德华异质结构设计中都能实现二维材料大家族的几乎无限组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验