Canedy Chadwick L, Jackson Eric M, Espinola Richard L, Pauli Myron R, Auxier Jason M, Kim Chul Soo, Kim Mijin, Nolde Jill A, Ellis Chase T, Aifer Edward H, Vurgaftman Igor, Jayaraman Vijaysekhar, Kolasa Borys, Marsland Robert, Knipfer Benjamin, Meyer Jerry R
Opt Express. 2023 Oct 9;31(21):35225-35244. doi: 10.1364/OE.500125.
We report a resonant cavity infrared detector (RCID) with an InAsSb/InAs superlattice absorber with a thickness of only ≈ 100 nm, a 33-period GaAs/AlGaAs distributed Bragg reflector bottom mirror, and a Ge/SiO/Ge top mirror. At a low bias voltage of 150 mV, the external quantum efficiency (EQE) reaches 58% at the resonance wavelength λres ≈ 4.6 µm, with linewidth δλ = 19-27 nm. The thermal background current for a realistic system scenario with f/4 optic that views a 300 K scene is estimated by integrating the photocurrent generated by background spanning the entire mid-IR spectral band (3-5 µm). The resulting specific detectivity is a factor of 3 lower than for a state-of-the-art broadband HgCdTe device at 300 K, where dark current dominates the noise. However, at 125 K where the suppression of background noise becomes critical, the estimated specific detectivity D* of 5.5 × 10cm Hz/W is more than 3× higher. This occurs despite a non-optimal absorber cut-off that causes the EQE to decrease rapidly with decreasing temperature, e.g., to 33% at 125 K. The present RCID's advantage over the broadband device depends critically on its low EQE at non-resonance wavelengths: ≤ 1% in the range 3.9-5.5 µm. Simulations using NRL MULTIBANDS indicate that impact ionization in the bottom contact and absorber layers dominates the dark current at near ambient temperatures. We expect future design modifications to substantially enhance D* throughout the investigated temperature range of 100-300 K.
我们报道了一种共振腔红外探测器(RCID),它具有厚度仅约100 nm的InAsSb/InAs超晶格吸收体、一个33周期的GaAs/AlGaAs分布布拉格反射器底部反射镜以及一个Ge/SiO/Ge顶部反射镜。在150 mV的低偏置电压下,外部量子效率(EQE)在共振波长λres≈4.6 µm处达到58%,线宽δλ = 19 - 27 nm。对于一个f/4光学系统观察300 K场景的实际系统情况,通过对跨越整个中红外光谱带(3 - 5 µm)的背景产生的光电流进行积分来估计热背景电流。所得的比探测率比300 K时的一种先进宽带HgCdTe器件低3倍,在该温度下暗电流主导噪声。然而,在125 K时背景噪声抑制变得至关重要,估计的比探测率D为5.5×10¹¹ cm Hz¹/²/W,高出3倍多。尽管吸收体截止不理想导致EQE随温度降低而迅速下降,例如在125 K时降至33%,但仍出现这种情况。当前RCID相对于宽带器件的优势关键取决于其在非共振波长处的低EQE:在3.9 - 5.5 µm范围内≤1%。使用NRL MULTIBANDS进行的模拟表明,底部接触层和吸收体层中的碰撞电离在接近环境温度时主导暗电流。我们预计未来的设计改进将在100 - 300 K的整个研究温度范围内大幅提高D。