Suppr超能文献

从核糖体到核糖体毒素:了解两种食源毒素——脱氧雪腐镰刀菌烯醇和志贺毒素的毒性

From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins.

作者信息

Garofalo Marion, Payros Delphine, Taieb Frederic, Oswald Eric, Nougayrède Jean-Philippe, Oswald Isabelle P

机构信息

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

出版信息

Crit Rev Food Sci Nutr. 2025;65(1):193-205. doi: 10.1080/10408398.2023.2271101. Epub 2023 Oct 20.

Abstract

Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.

摘要

合成蛋白质的核糖体是最核心且进化上保守的细胞器之一。鉴于蛋白质在细胞功能中的关键作用,原核和真核病原体已进化出强效毒素来抑制核糖体功能并削弱其宿主。许多产生核糖体毒素的病原体与食物有关。例如,食物可能被产生核糖体毒素志贺毒素的细菌病原体污染,也可能被真菌核糖体毒素脱氧雪腐镰刀菌烯醇污染。志贺毒素切割核糖体RNA,而脱氧雪腐镰刀菌烯醇结合并抑制肽基转移酶中心。尽管它们的作用方式不同,但这两类核糖体毒素都阻碍蛋白质翻译,还会引发其他类似的毒性作用,这些作用取决于或不取决于核糖体毒性应激反应的激活。核糖体毒性应激反应依赖性作用包括炎症和细胞凋亡,而核糖体毒性应激反应非依赖性作用包括内质网应激、氧化应激和自噬。对于其他作用,如细胞周期停滞和细胞骨架调节,核糖体毒性应激反应的参与仍存在争议。核糖体毒素影响一种细胞器却能诱导多种毒性作用,对细胞产生多种后果。因此,核糖体可被视为食源性核糖体毒素靶向的细胞“阿喀琉斯之踵”。鉴于核糖体毒素的高毒性,它们构成了重大的健康风险,因为人类极易通过受污染的食物来源广泛接触这些毒素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验