Suppr超能文献

基于时齐机制的判别相关融合的多模态生理信号情感识别

Emotion Recognition From Multimodal Physiological Signals via Discriminative Correlation Fusion With a Temporal Alignment Mechanism.

出版信息

IEEE Trans Cybern. 2024 May;54(5):3079-3092. doi: 10.1109/TCYB.2023.3320107. Epub 2024 Apr 16.

Abstract

Modeling correlations between multimodal physiological signals [e.g., canonical correlation analysis (CCA)] for emotion recognition has attracted much attention. However, existing studies rarely consider the neural nature of emotional responses within physiological signals. Furthermore, during fusion space construction, the CCA method maximizes only the correlations between different modalities and neglects the discriminative information of different emotional states. Most importantly, temporal mismatches between different neural activities are often ignored; therefore, the theoretical assumptions that multimodal data should be aligned in time and space before fusion are not fulfilled. To address these issues, we propose a discriminative correlation fusion method coupled with a temporal alignment mechanism for multimodal physiological signals. We first use neural signal analysis techniques to construct neural representations of the central nervous system (CNS) and autonomic nervous system (ANS). respectively. Then, emotion class labels are introduced in CCA to obtain more discriminative fusion representations from multimodal neural responses, and the temporal alignment between the CNS and ANS is jointly optimized with a fusion procedure that applies the Bayesian algorithm. The experimental results demonstrate that our method significantly improves the emotion recognition performance. Additionally, we show that this fusion method can model the underlying mechanisms in human nervous systems during emotional responses, and our results are consistent with prior findings. This study may guide a new approach for exploring human cognitive function based on physiological signals at different time scales and promote the development of computational intelligence and harmonious human-computer interactions.

摘要

多模态生理信号(如典型相关分析(CCA))之间相关性的建模对于情感识别已经引起了广泛关注。然而,现有研究很少考虑生理信号中情感反应的神经本质。此外,在融合空间构建过程中,CCA 方法仅最大化不同模态之间的相关性,而忽略了不同情绪状态的判别信息。最重要的是,不同神经活动之间的时间失配通常被忽略;因此,融合前多模态数据应在时间和空间上对齐的理论假设并不成立。为了解决这些问题,我们提出了一种基于判别相关融合的方法,并结合了一种多模态生理信号的时间对齐机制。我们首先使用神经信号分析技术分别构建中枢神经系统(CNS)和自主神经系统(ANS)的神经表示。然后,在 CCA 中引入情感类别标签,从多模态神经反应中获得更具判别力的融合表示,并通过应用贝叶斯算法的融合过程联合优化 CNS 和 ANS 之间的时间对齐。实验结果表明,我们的方法显著提高了情感识别性能。此外,我们还表明,这种融合方法可以模拟人类神经系统在情感反应过程中的潜在机制,并且我们的结果与已有发现一致。这项研究可能为基于不同时间尺度的生理信号探索人类认知功能提供一种新的方法,并促进计算智能和人机和谐交互的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验