Suppr超能文献

BrainFusion:用于多模态脑机接口和脑-体交互研究的低代码、可重现且可部署的软件框架。

BrainFusion: a Low-Code, Reproducible, and Deployable Software Framework for Multimodal Brain‒Computer Interface and Brain‒Body Interaction Research.

作者信息

Li Wenhao, Gao Chenyang, Li Zhaobo, Diao Yunheng, Li Jiaxin, Zhou Jiayi, Zhou Jing, Peng Ying, Chen Guanchu, Wu Xuecheng, Wu Kai

机构信息

School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 511442, China.

School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(32):e17408. doi: 10.1002/advs.202417408. Epub 2025 Jun 5.

Abstract

This study presents BrainFusion, a unified software framework designed to improve reproducibility and support translational applications in multimodal brain-computer interface (BCI) and brain-body interaction research. While ​electroencephalography (EEG)​​-based BCIs have advanced considerably, integrating multimodal physiological signals remains hindered by analytical complexity, limited standardization, and challenges in real-world deployment. BrainFusion addresses these gaps through standardized data structures, automated preprocessing pipelines, cross-modal feature engineering, and integrated machine learning modules. Its application generator further enables streamlined deployment of workflows as standalone executables. Demonstrated in two case studies, BrainFusion achieves 95.5% accuracy in within-subject EEG-functional near-infrared spectroscopy (fNIRS)​​ motor imagery classification using ensemble modeling and 80.2% accuracy in EEG-electrocardiography (ECG)​​ sleep staging using deep learning, with the latter successfully deployed as an executable tool. Supporting EEG, fNIRS, electromyography (EMG)​, and ECG, BrainFusion provides a low-code, visually guided environment, facilitating accessibility and bridging the gap between multimodal research and application in real world.

摘要

本研究介绍了BrainFusion,这是一个统一的软件框架,旨在提高多模态脑机接口(BCI)和脑-体交互研究中的可重复性并支持转化应用。虽然基于脑电图(EEG)的BCI已经取得了长足的进步,但整合多模态生理信号仍然受到分析复杂性、标准化程度有限以及实际部署中的挑战的阻碍。BrainFusion通过标准化数据结构、自动化预处理管道、跨模态特征工程和集成机器学习模块来解决这些差距。其应用生成器还能将工作流程作为独立可执行文件进行简化部署。在两个案例研究中得到验证,BrainFusion在使用集成建模的受试者内EEG-功能近红外光谱(fNIRS)运动想象分类中达到了95.5%的准确率,在使用深度学习的EEG-心电图(ECG)睡眠分期中达到了80.2%的准确率,后者已成功作为可执行工具进行部署。BrainFusion支持EEG、fNIRS、肌电图(EMG)和ECG,提供了一个低代码、可视化引导的环境,便于使用,并弥合了多模态研究与实际应用之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验