Akkiraju Siddhartha, Gilley Dylan M, Savoie Brett M, Boudouris Bryan W
Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906.
Department of Chemistry, Purdue University, West Lafayette, IN 47906.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308741120. doi: 10.1073/pnas.2308741120. Epub 2023 Oct 20.
Macromolecules bearing open-shell entities offer unique transport properties for both electronic and spintronic devices. This work demonstrates that, unlike their conjugated polymer counterparts, the charge carriers in radical polymers (i.e., macromolecules with nonconjugated backbones and with stable open-shell sites present at their pendant groups) are singlet cations, which opens significant avenues for manipulating macromolecular design for advanced solid-state transport in these highly transparent conductors. Despite this key point, magnetoresistive effects are present in radical polymer thin films under applied magnetic fields due to the presence of impurity sites in low (i.e., <1%) concentrations. Additionally, thermal annealing of poly(4-glycidyloxy-2,2,6,6- tetramethylpiperidine-1-oxyl) (PTEO), a nonconjugated polymer with stable open-shell pendant groups, facilitated better electron exchange and pairwise spin interactions resulting in an unexpected magnetoresistance signal at relatively low field strengths (i.e., <2 T). The addition of 4-hydroxy-2,2,6,6-tetramethylpiperidin-N-oxy (TEMPO-OH), a paramagnetic species, increased the magnitude of the MR effect when the small molecule was added to the radical polymer matrix. These macroscopic experimental observables are explained using computational approaches that detail the fundamental molecular principles. This intrinsic localized charge transport behavior differs from the current state of the art regarding closed-shell conjugated macromolecules, and it opens an avenue towards next-generation transport in organic electronic materials.
带有开壳层实体的大分子为电子和自旋电子器件提供了独特的传输特性。这项工作表明,与共轭聚合物不同,自由基聚合物(即具有非共轭主链且侧基存在稳定开壳层位点的大分子)中的电荷载流子是单线态阳离子,这为操纵大分子设计以实现这些高透明导体中的先进固态传输开辟了重要途径。尽管有这一关键点,但由于低浓度(即<1%)杂质位点的存在,在施加磁场的情况下,自由基聚合物薄膜中仍存在磁阻效应。此外,聚(4-缩水甘油氧基-2,2,6,6-四甲基哌啶-1-氧基)(PTEO)是一种具有稳定开壳层侧基的非共轭聚合物,其热退火促进了更好的电子交换和成对自旋相互作用,从而在相对低的场强(即<2 T)下产生了意外的磁阻信号。当将顺磁性物质4-羟基-2,2,6,6-四甲基哌啶-N-氧基(TEMPO-OH)添加到自由基聚合物基质中时,磁阻效应的幅度增加。使用详细阐述基本分子原理的计算方法对这些宏观实验观测结果进行了解释。这种内在的局域电荷传输行为不同于目前关于闭壳层共轭大分子的现有技术,它为有机电子材料中的下一代传输开辟了一条途径。