Tahir Hamas, Liu Kangying, Yang Yun-Fang, Baruah Kaushik, Savoie Brett M, Boudouris Bryan W
Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Department of Chemistry, Purdue University, West Lafayette, IN, USA.
Nat Commun. 2025 Jan 14;16(1):652. doi: 10.1038/s41467-025-56056-w.
Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges. Despite the recent observation of organic magnetism and magnetoresistance phenomena in radical polymers, their spin propagation properties have not been thoroughly studied. Here, we show that a nonconjugated radical polymer is an exceptional spin transport medium. It shows large effective spin mixing conductance of 3.2 × 10 m and a room temperature spin diffusion length of 105 nm. Its temperature-independent spin diffusion length suggests that exchange-mediated transport governs spin transport. The substantial spin mixing conductance is promising, and these results establish the potential of radical polymers in emerging spin-based applications.
长期以来,自旋电流一直被认为是解决半导体行业电路小型化挑战的一种潜在方案。虽然已经对许多半导体材料进行了广泛的自旋电子学应用探索,但在室温下,关于器件性能、材料稳定性以及高效自旋电流产生等问题仍然存在。非共轭顺磁性自由基聚合物为这些挑战提供了独特的解决方案。尽管最近在自由基聚合物中观察到了有机磁性和磁阻现象,但其自旋传播特性尚未得到充分研究。在此,我们表明一种非共轭自由基聚合物是一种出色的自旋传输介质。它表现出3.2×10米的大有效自旋混合电导以及105纳米的室温自旋扩散长度。其与温度无关的自旋扩散长度表明,交换介导的传输控制着自旋传输。可观的自旋混合电导很有前景,这些结果确立了自由基聚合物在新兴自旋基应用中的潜力。