Yannai Michael, Adiv Yuval, Dahan Raphael, Wang Kangpeng, Gorlach Alexey, Rivera Nicholas, Fishman Tal, Krüger Michael, Kaminer Ido
Faculty of Electrical & Computer Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Phys Rev Lett. 2023 Oct 6;131(14):145002. doi: 10.1103/PhysRevLett.131.145002.
The ability to form monoenergetic electron beams is vital for high-resolution electron spectroscopy and imaging. Such capabilities are commonly achieved using an electron monochromator, which energy filters a dispersed electron beam, thus reducing the electron flux to yield down to meV energy resolution. This reduction in flux hinders the use of monochromators in many applications, such as ultrafast transmission electron microscopes (UTEMs). Here, we develop and demonstrate a mechanism for electron energy monochromation that does not reduce the flux-a lossless monochromator. The mechanism is based on the interaction of free-electron pulses with single-cycle THz near fields, created by nonlinear conversion of an optical laser pulse near the electron beam path inside a UTEM. Our experiment reduces the electron energy spread by a factor of up to 2.9 without compromising the beam flux. Moreover, as the electron-THz interaction takes place over an extended region of many tens of microns in free space, the realized technique is highly robust-granting uniform monochromation over a wide area, larger than the electron beam diameter. We further demonstrate the wide tunability of our method by monochromating the electron beam at multiple primary electron energies from 60 to 200 keV, studying the effect of various electron and THz parameters on its performance. Our findings have direct applications in the fast-growing field of ultrafast electron microscopy, allowing time- and energy-resolved studies of exciton physics, phononic vibrational resonances, charge transport effects, and optical excitations in the mid IR to the far IR.
形成单能电子束的能力对于高分辨率电子光谱学和成像至关重要。这种能力通常通过电子单色仪来实现,该仪器对分散的电子束进行能量过滤,从而降低电子通量以实现低至毫电子伏特的能量分辨率。通量的这种降低阻碍了单色仪在许多应用中的使用,例如超快透射电子显微镜(UTEM)。在此,我们开发并演示了一种不会降低通量的电子能量单色化机制——无损单色仪。该机制基于自由电子脉冲与单周期太赫兹近场的相互作用,这种近场是由UTEM内部电子束路径附近的光学激光脉冲的非线性转换产生的。我们的实验在不影响束流通量的情况下,将电子能量展宽降低了高达2.9倍。此外,由于电子与太赫兹的相互作用在自由空间中数十微米的扩展区域内发生,所实现的技术具有高度的稳健性——能在比电子束直径更大的广阔区域内实现均匀的单色化。我们还通过在60至200 keV的多个初级电子能量下对电子束进行单色化,研究各种电子和太赫兹参数对其性能的影响,进一步证明了我们方法的广泛可调性。我们的研究结果在快速发展的超快电子显微镜领域有直接应用,能够对激子物理、声子振动共振、电荷传输效应以及中红外到远红外的光学激发进行时间和能量分辨研究。