Korobko M, Südbeck J, Steinlechner S, Schnabel R
Institut für Quantenphysik und Zentrum für Optische Quantentechnologien der Universität Hamburg, 5 Luruper Chaussee 149, 22761 Hamburg, Germany.
Faculty of Science and Engineering, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, Netherlands.
Phys Rev Lett. 2023 Oct 6;131(14):143603. doi: 10.1103/PhysRevLett.131.143603.
The most efficient approach to laser interferometric force sensing to date uses monochromatic carrier light with its signal sideband spectrum in a squeezed vacuum state. Quantum decoherence, i.e., mixing with an ordinary vacuum state due to optical losses, is the main sensitivity limit. In this Letter, we present both theoretical and experimental evidence that quantum decoherence in high-precision laser interferometric force sensors enhanced with optical cavities and squeezed light injection can be mitigated by a quantum squeeze operation inside the sensor's cavity. Our experiment shows an enhanced measurement sensitivity that is independent of the optical readout loss in a wide range. Our results pave the way for quantum improvements in scenarios where high decoherence previously precluded the use of squeezed light. Our results hold significant potential for advancing the field of quantum sensors and enabling new experimental approaches in high-precision measurement technology.
迄今为止,用于激光干涉力传感的最有效方法是使用单色载波光,其信号边带频谱处于压缩真空状态。量子退相干,即由于光学损耗与普通真空态混合,是主要的灵敏度限制。在本信函中,我们给出了理论和实验证据,表明通过在传感器腔体内进行量子压缩操作,可以减轻配备光学腔和注入压缩光的高精度激光干涉力传感器中的量子退相干。我们的实验显示出在很宽范围内与光学读出损耗无关的增强测量灵敏度。我们的结果为在高退相干先前排除使用压缩光的情况下实现量子改进铺平了道路。我们的结果在推进量子传感器领域以及在高精度测量技术中实现新的实验方法方面具有巨大潜力。