School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China.
School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
Biochem Biophys Res Commun. 2023 Nov 26;683:149108. doi: 10.1016/j.bbrc.2023.10.040. Epub 2023 Oct 11.
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 10 L mol > sulfamethizole (SMT): 6.28 × 10 L mol > sulfamerazine (SMR): 2.70 × 10 L mol > sulfamonomethoxine (SMM): 2.54 × 10 L mol > sulfamethazine (SMZ): 3.06 × 10 L mol > sulfadimethoxine (SDM): 2.50 × 10 L mol. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol to -8.6 kcal mol. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
磺胺类抗生素(SAs)相关的环境和健康风险受到越来越多的关注。本研究采用多光谱法、密度泛函理论(DFT)和分子对接技术,研究了六种代表性 SAs 与人体血清白蛋白(HSA)之间的相互作用特征和机制。多光谱分析表明,六种 SAs 与 HSA 具有显著的结合能力。在 298 K 时,结合常数的顺序如下:磺胺多辛(SDX):7.18×10^4 L/mol > 磺胺甲噁唑(SMT):6.28×10^4 L/mol > 磺胺脒(SMR):2.70×10^4 L/mol > 磺胺甲噁唑(SMM):2.54×10^4 L/mol > 磺胺嘧啶(SMZ):3.06×10^4 L/mol > 磺胺二甲氧嘧啶(SDM):2.50×10^4 L/mol。在六种 SAs 与 HSA 的分子对接过程中,结合亲和力范围为-7.4 kcal/mol 至-8.6 kcal/mol。值得注意的是,HSA-SDX 的对接结果达到了-8.6 kcal/mol 的最大值,表明 SDX 可能对 HSA 具有最高的结合能力。HSA-SDX 结合被鉴定为静态猝灭和放热过程,主要由氢键(H 键)或范德华(vdW)相互作用驱动。SMR/SMZ/SMM/SDX/SMT 对 HSA 的猝灭过程是动态和静态猝灭的结合,表明是一个吸热反应。疏水相互作用是 SMR/SMZ/SMM/SDX/SMT 与 HSA 结合的主要驱动力。竞争结合结果表明,HSA-SAs 的主要结合位点位于 HSA 结构的亚域 IB 中,与分子对接结果一致。基于 DFT 计算的相关分析揭示了 SAs 的结构化学特征与 HSA-SAs 结合性能之间的内在关系。双描述符(DD)和亲电福井函数与 HSA-SAs 的结合常数具有显著关系(分别为 0.71 和-0.71),预测了 SAs 与 HSA 的结合性能。这些发现对于评估 SAs 的环境风险以及了解它们对生物生命活动的影响具有重要的科学价值。